Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Nov;65(5):1990-4.
doi: 10.1152/jappl.1988.65.5.1990.

Hypertonic aerosol inhalation does not alter central airway blood flow in dogs

Affiliations

Hypertonic aerosol inhalation does not alter central airway blood flow in dogs

D J Godden et al. J Appl Physiol (1985). 1988 Nov.

Abstract

Tracheobronchial blood flow in dogs increases with cold or dry air hyperventilation, possibly as a result of airway drying leading to increased osmolarity of airway surface fluid. This study was designed to examine whether administration of aerosols of various tonicity to alter airway surface fluid osmolarity would induce similar blood flow changes. Tracheobronchial blood flow was measured by the radioactive microsphere technique in six anesthetized dogs ventilated with warm humid air (100% relative humidity) for 15 min (period 1), air containing ultrasonically nebulized saline aerosol (1,711 mosmol/kg) for 3 min (period 2) and 12 min (period 3), and the same aerosol at a higher nebulizer output for a further 3 min (period 4). Between periods 3 and 4, the dogs were ventilated with warm humid air for 30 min to reestablish base-line conditions. In another five dogs, measurements were made after 30 min of ventilation with 1) warm humid air, 2) isotonic saline aerosol, 3) warm humid air, 4) distilled water aerosol (3 dogs), and hypertonic saline aerosol (2 dogs). After the last measurement was made, each dog was killed, the trachea and major bronchi were excised, and blood flow was calculated. No change in blood flow was found during any period of aerosol inhalation. The osmolar load imposed on the airways was estimated and was similar to that occurring during cold or dry air hyperventilation. These data suggest that increasing osmolarity of airway surface fluid does not explain the blood flow changes seen during hyperventilation of cold or dry air.

PubMed Disclaimer

Publication types

LinkOut - more resources