Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Jul 1;26(13):3079-3090.
doi: 10.1158/1078-0432.CCR-19-2744. Epub 2020 Feb 25.

Long-term Consequences of Pelvic Irradiation: Toxicities, Challenges, and Therapeutic Opportunities with Pharmacologic Mitigators

Affiliations
Review

Long-term Consequences of Pelvic Irradiation: Toxicities, Challenges, and Therapeutic Opportunities with Pharmacologic Mitigators

Jung Wook Huh et al. Clin Cancer Res. .

Abstract

A percentage of long-term cancer survivors who receive pelvic irradiation will develop treatment-related late effects, collectively termed pelvic radiation disease. Thus, there is a need to prevent or ameliorate treatment-related late effects in these patients. Modern radiotherapy methods can preferentially protect normal tissues from radiation toxicities to permit higher doses to targets. However, concerns about chronic small bowel toxicity, for example, still constrain the prescription dose. This provides strong rationale for considering adding pharmacologic mitigators. Implementation of modern targeted radiotherapy methods enables delivery of focused radiation to target volumes, while minimizing dose to normal tissues. In prostate cancer, these technical advances enabled safe radiation dose escalation and better local tumor control without increasing normal tissue complications. In other pelvic diseases, these new radiotherapy methods have not resulted in the low probability of normal tissue damage achieved with prostate radiotherapy. The persistence of toxicity provides rationale for pharmacologic mitigators. Several new agents could be readily tested in clinical trials because they are being or have been studied in human patients already. Although there are promising preclinical data supporting mitigators, no clinically proven options to treat or prevent pelvic radiation disease currently exist. This review highlights therapeutic options for prevention and/or treatment of pelvic radiation disease, using pharmacologic mitigators. Successful development of mitigators would reduce the number of survivors who suffer from these devastating consequences of pelvic radiotherapy. It is important to note that pharmacologic mitigators to ameliorate pelvic radiation disease may be applicable to other irradiated sites in which chronic toxicity impairs quality of life.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources