Principles and current strategies targeting metallo-β-lactamase mediated antibacterial resistance
- PMID: 32100311
- DOI: 10.1002/med.21665
Principles and current strategies targeting metallo-β-lactamase mediated antibacterial resistance
Abstract
Resistance to β-lactam antibacterials is commonly associated with the production of the serine β-lactamases (SBLs) and/or metallo-β-lactamases (MBLs). Although clinically useful inhibitors for the SBLs have been developed, no equivalent inhibitors are available for the MBLs, which can hydrolyze almost all β-lactam antibiotics, including the so-called "last resort" carbapenems. It is still a challenging task to develop a clinically useful inhibitor that should be broad-spectrum targeting multiple clinically relevant MBL enzymes that differ in their active site features. This review provides a detailed description of interaction modes of substrates and small-molecule inhibitors with various MBL enzymes and highlights the importance of metal- and "anchor residue"-binding features to achieve broad-spectrum MBL inhibition. Recently emerging active site interference strategies include metal ion deprivation, metal ion replacement, and cysteine modification as challenging, but worth experimenting directions for inhibitor development. The metalloenzyme selectivity, metal-binding pharmacophore, and cellular permeability and accumulation should be properly considered in the further development of clinically useful inhibitors to combat MBL-mediated antibacterial resistance.
Keywords: anchor residue; antibiotic resistance; metal-binding pharmacophore; metallo-β-lactamase; metalloenzyme.
© 2020 Wiley Periodicals, Inc.
Similar articles
-
Recent advances in β-lactamase inhibitor chemotypes and inhibition modes.Eur J Med Chem. 2022 Nov 15;242:114677. doi: 10.1016/j.ejmech.2022.114677. Epub 2022 Aug 13. Eur J Med Chem. 2022. PMID: 35988449 Review.
-
Metal binding pharmacophore click-derived discovery of new broad-spectrum metallo-β-lactamase inhibitors.Eur J Med Chem. 2023 Sep 5;257:115473. doi: 10.1016/j.ejmech.2023.115473. Epub 2023 May 13. Eur J Med Chem. 2023. PMID: 37209449
-
Sulfamoyl Heteroarylcarboxylic Acids as Promising Metallo-β-Lactamase Inhibitors for Controlling Bacterial Carbapenem Resistance.mBio. 2020 Mar 17;11(2):e03144-19. doi: 10.1128/mBio.03144-19. mBio. 2020. PMID: 32184250 Free PMC article.
-
Diversity and Proliferation of Metallo-β-Lactamases: a Clarion Call for Clinically Effective Metallo-β-Lactamase Inhibitors.Appl Environ Microbiol. 2018 Aug 31;84(18):e00698-18. doi: 10.1128/AEM.00698-18. Print 2018 Sep 15. Appl Environ Microbiol. 2018. PMID: 30006399 Free PMC article. Review.
-
Metallo-β-Lactamase Inhibitors Inspired on Snapshots from the Catalytic Mechanism.Biomolecules. 2020 Jun 3;10(6):854. doi: 10.3390/biom10060854. Biomolecules. 2020. PMID: 32503337 Free PMC article. Review.
Cited by
-
Multidrug Resistance (MDR) and Collateral Sensitivity in Bacteria, with Special Attention to Genetic and Evolutionary Aspects and to the Perspectives of Antimicrobial Peptides-A Review.Pathogens. 2020 Jun 29;9(7):522. doi: 10.3390/pathogens9070522. Pathogens. 2020. PMID: 32610480 Free PMC article. Review.
-
Harder than Metal: Challenging Antimicrobial Resistance with Metallo-β-lactamase Inhibitors.J Med Chem. 2025 Jun 12;68(11):10556-10576. doi: 10.1021/acs.jmedchem.5c00553. Epub 2025 May 30. J Med Chem. 2025. PMID: 40446161 Free PMC article. Review.
-
MeDBA: the Metalloenzyme Data Bank and Analysis platform.Nucleic Acids Res. 2023 Jan 6;51(D1):D593-D602. doi: 10.1093/nar/gkac860. Nucleic Acids Res. 2023. PMID: 36243971 Free PMC article.
-
Imitation of β-lactam binding enables broad-spectrum metallo-β-lactamase inhibitors.Nat Chem. 2022 Jan;14(1):15-24. doi: 10.1038/s41557-021-00831-x. Epub 2021 Dec 13. Nat Chem. 2022. PMID: 34903857
-
AncPhore: A versatile tool for anchor pharmacophore steered drug discovery with applications in discovery of new inhibitors targeting metallo-β-lactamases and indoleamine/tryptophan 2,3-dioxygenases.Acta Pharm Sin B. 2021 Jul;11(7):1931-1946. doi: 10.1016/j.apsb.2021.01.018. Epub 2021 Jan 26. Acta Pharm Sin B. 2021. PMID: 34386329 Free PMC article.
References
REFERENCES
-
- Blair JMA, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJV. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol. 2015;13(1):42-51.
-
- Docquier J-D, Mangani S. An update on β-lactamase inhibitor discovery and development. Drug Resist Update. 2018;36:13-29.
-
- Garber K. A beta-lactamase inhibitor revival provides new hope for old antibiotics. Nat Rev Drug Discov. 2015;14(7):445-447.
-
- Chaudhary AS. A review of global initiatives to fight antibiotic resistance and recent antibiotics׳ discovery. Acta Pharm Sin B. 2016;6(6):552-556.
-
- Bush K, Jacoby GA. Updated functional classification of beta-lactamases. Antimicrob Agents Chemother. 2010;54(3):969-976.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous