Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 May 15:875:173036.
doi: 10.1016/j.ejphar.2020.173036. Epub 2020 Feb 23.

The polyphenol ellagic acid exerts anti-inflammatory actions via disruption of store-operated calcium entry (SOCE) pathway activators and coupling mediators

Affiliations

The polyphenol ellagic acid exerts anti-inflammatory actions via disruption of store-operated calcium entry (SOCE) pathway activators and coupling mediators

Matthew T Murphy et al. Eur J Pharmacol. .

Abstract

Ellagic acid, a naturally occurring phenol found in a variety of fruits and nuts has been shown to possess anti-inflammatory properties. However, the mechanism of action behind its anti-inflammatory action is unclear. Using human Jurkat T cells, our study examined the effects of ellagic acid (EA) on Ca2+ handling, in particular, store-operated Ca2+ entry (SOCE), a process critical to proper T cell function. We observed that the acute addition of EA-induced Ca2+ release with an EC50 of 63 μM. The Ca2+ release was significantly attenuated by Xestospongin C, a known inhibitor of the Inositol 1,4,5-trisphosphate receptor (IP3R) channel and was unaffected by the phospholipase C (PLC) inhibitor, U73122. Furthermore, chronic incubation of Jurkat T cells with EA not only decreased the ATP-induced Ca2+ release but also diminished the SOCE-mediated Ca2+ influx in a dose-dependent manner. This inhibition was confirmed by reduced Mn2+ entry rates in the EA-treated cells. The ATP-induced Ca2+ entry was also attenuated in EA-treated HEK293 cells transiently transfected with SOCE channel Orai1-myc and ER-sensor stromal interaction molecule (STIM1) (HEKSTIM/Orai). Moreover, EA treatment interfered with the Orai1 and STIM1 coupling by disrupting STIM1 puncta formation in the HEKSTIM/Orai cells. We observed that EA treatment reduced cytokine secretion and nuclear factor of activated T-cell transcriptional activity in stimulated T cells. Hence, by inhibiting SOCE mediated Ca2+ influx, EA decreased downstream activation of pro-inflammatory mediators. These results suggest a novel target for EA-mediated effects and provide insight into the mechanisms underlying EA-mediated anti-inflammatory effects.

Keywords: Anti-inflammatory; Ellagic acid; Orai; Store-operated calcium entry (SOCE); Stromal interaction molecule (STIM).

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources