Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Feb 23;12(2):583.
doi: 10.3390/nu12020583.

The Inhibitory Roles of Vitamin K in Progression of Vascular Calcification

Affiliations
Review

The Inhibitory Roles of Vitamin K in Progression of Vascular Calcification

Atsushi Shioi et al. Nutrients. .

Abstract

Vitamin K is a fat-soluble vitamin that is indispensable for the activation of vitamin K-dependent proteins (VKDPs) and may be implicated in cardiovascular disease (CVD). Vascular calcification is intimately associated with CV events and mortality and is a chronic inflammatory process in which activated macrophages promote osteoblastic differentiation of vascular smooth muscle cells (VSMCs) through the production of proinflammatory cytokines such as IL-1β, IL-6, TNF-α, and oncostatin M (OSM) in both intimal and medial layers of arterial walls. This process may be mainly mediated through NF-κB signaling pathway. Vitamin K has been demonstrated to exert anti-inflammatory effects through antagonizing NF-κB signaling in both in vitro and in vivo studies, suggesting that vitamin K may prevent vascular calcification via anti-inflammatory mechanisms. Matrix Gla protein (MGP) is a major inhibitor of soft tissue calcification and contributes to preventing both intimal and medial vascular calcification. Vitamin K may also inhibit progression of vascular calcification by enhancing the activity of MGP through facilitating its γ-carboxylation. In support of this hypothesis, the procalcific effects of warfarin, an antagonist of vitamin K, on arterial calcification have been demonstrated in several clinical studies. Among the inactive MGP forms, dephospho-uncarboxylated MGP (dp-ucMGP) may be regarded as the most useful biomarker of not only vitamin K deficiency, but also vascular calcification and CVD. There have been several studies showing the association of circulating levels of dp-ucMGP with vitamin K intake, vascular calcification, mortality, and CVD. However, additional larger prospective studies including randomized controlled trials are necessary to confirm the beneficial effects of vitamin K supplementation on CV health.

Keywords: atherosclerosis; matrix Gla protein; oncostatin M; vascular calcification.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. Shearer M.J., Okano T. Key Pathways and Regulators of Vitamin K Function and Intermediary Metabolism. Annu. Rev. Nutr. 2018;38:127–151. doi: 10.1146/annurev-nutr-082117-051741. - DOI - PubMed
    1. van Ballegooijen A.J., Beulens J.W. The Role of Vitamin K Status in Cardiovascular Health: Evidence from Observational and Clinical Studies. Curr. Nutr. Rep. 2017;6:197–205. doi: 10.1007/s13668-017-0208-8. - DOI - PMC - PubMed
    1. Nakagawa K., Hirota Y., Sawada N., Yuge N., Watanabe M., Uchino Y., Okuda N., Shimomura Y., Suhara Y., Okano T. Identification of UBIAD1 as a novel human menaquinone-4 biosynthetic enzyme. Nature. 2010;468:117–121. doi: 10.1038/nature09464. - DOI - PubMed
    1. Danziger J. Vitamin K-dependent proteins, warfarin, and vascular calcification. Clin. J. Am. Soc. Nephrol. 2008;3:1504–1510. doi: 10.2215/CJN.00770208. - DOI - PMC - PubMed
    1. Halder M., Petsophonsakul P., Akbulut A.C., Pavlic A., Bohan F., Anderson E., Maresz K., Kramann R., Schurgers L. Vitamin K: Double Bonds beyond Coagulation Insights into Differences between Vitamin K1 and K2 in Health and Disease. Int. J. Mol. Sci. 2019;20:896. doi: 10.3390/ijms20040896. - DOI - PMC - PubMed