Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 May;26(5):1445-1457.
doi: 10.1038/s41380-020-0695-7. Epub 2020 Feb 26.

Tet3 ablation in adult brain neurons increases anxiety-like behavior and regulates cognitive function in mice

Affiliations

Tet3 ablation in adult brain neurons increases anxiety-like behavior and regulates cognitive function in mice

Cláudia Antunes et al. Mol Psychiatry. 2021 May.

Abstract

TET3 is a member of the ten-eleven translocation (TET) family of enzymes which oxidize 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC). Tet3 is highly expressed in the brain, where 5hmC levels are most abundant. In adult mice, we observed that TET3 is present in mature neurons and oligodendrocytes but is absent in astrocytes. To investigate the function of TET3 in adult postmitotic neurons, we crossed Tet3 floxed mice with a neuronal Cre-expressing mouse line, Camk2a-CreERT2, obtaining a Tet3 conditional KO (cKO) mouse line. Ablation of Tet3 in adult mature neurons resulted in increased anxiety-like behavior with concomitant hypercorticalism, and impaired hippocampal-dependent spatial orientation. Transcriptome and gene-specific expression analysis of the hippocampus showed dysregulation of genes involved in glucocorticoid signaling pathway (HPA axis) in the ventral hippocampus, whereas upregulation of immediate early genes was observed in both dorsal and ventral hippocampal areas. In addition, Tet3 cKO mice exhibit increased dendritic spine maturation in the ventral CA1 hippocampal subregion. Based on these observations, we suggest that TET3 is involved in molecular alterations that govern hippocampal-dependent functions. These results reveal a critical role for epigenetic modifications in modulating brain functions, opening new insights into the molecular basis of neurological disorders.

PubMed Disclaimer

References

    1. Feng J, Fouse S, Fan G. Epigenetic regulation of neural gene expression and neuronal function. Pediatr Res. 2007;61:58r–63r. - PubMed - DOI
    1. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in Mammalian DNA by MLL partner TET1. Science. 2009;324:930–5. - PubMed - PMC - DOI
    1. Szulwach KE, Li X, Li Y, Song CX, Wu H, Dai Q, et al. 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nat Neurosci. 2011;14:1607–16. - PubMed - PMC - DOI
    1. Cadena-del-Castillo C, Valdes-Quezada C, Carmona-Aldana F, Arias C, Bermudez-Rattoni F, Recillas-Targa F. Age-dependent increment of hydroxymethylation in the brain cortex in the triple-transgenic mouse model of Alzheimer’s disease. J Alzheimer’s Dis. 2014;41:845–54. - DOI
    1. Santiago M, Antunes C, Guedes M, Sousa N, Marques CJ. TET enzymes and DNA hydroxymethylation in neural development and function—how critical are they? Genomics. 2014;104:334–40. - PubMed - DOI

Publication types