Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Feb;578(7796):540-544.
doi: 10.1038/s41586-020-2021-6. Epub 2020 Feb 26.

Probing the core of the strong nuclear interaction

Collaborators, Affiliations
Free article

Probing the core of the strong nuclear interaction

A Schmidt et al. Nature. 2020 Feb.
Free article

Abstract

The strong nuclear interaction between nucleons (protons and neutrons) is the effective force that holds the atomic nucleus together. This force stems from fundamental interactions between quarks and gluons (the constituents of nucleons) that are described by the equations of quantum chromodynamics. However, as these equations cannot be solved directly, nuclear interactions are described using simplified models, which are well constrained at typical inter-nucleon distances1-5 but not at shorter distances. This limits our ability to describe high-density nuclear matter such as that in the cores of neutron stars6. Here we use high-energy electron scattering measurements that isolate nucleon pairs in short-distance, high-momentum configurations7-9, accessing a kinematical regime that has not been previously explored by experiments, corresponding to relative momenta between the pair above 400 megaelectronvolts per c (c, speed of light in vacuum). As the relative momentum between two nucleons increases and their separation thereby decreases, we observe a transition from a spin-dependent tensor force to a predominantly spin-independent scalar force. These results demonstrate the usefulness of using such measurements to study the nuclear interaction at short distances and also support the use of point-like nucleon models with two- and three-body effective interactions to describe nuclear systems up to densities several times higher than the central density of the nucleus.

PubMed Disclaimer

Comment in

References

    1. Carlson, J. et al. Quantum Monte Carlo methods for nuclear physics. Rev. Mod. Phys. 87, 1067 (2015). - DOI
    1. Epelbaum, E., Hammer, H. W. & Meißner, U. G. Modern theory of nuclear forces. Rev. Mod. Phys. 81, 1773–1825 (2009). - DOI
    1. Machleidt, R., Holinde, K. & Elster, C. The Bonn meson-exchange model for the nucleon–nucleon interaction. Phys. Rep. 149, 1–89 (1987). - DOI
    1. Wiringa, R. B., Stoks, V. G. J. & Schiavilla, R. Accurate nucleon–nucleon potential with charge-independence breaking. Phys. Rev. C 51, 38–51 (1995). - DOI
    1. Gezerlis, A. et al. Quantum Monte Carlo calculations with chiral effective field theory interactions. Phys. Rev. Lett. 111, 032501 (2013). - PubMed - DOI