Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Apr;104(8):3473-3492.
doi: 10.1007/s00253-020-10434-0. Epub 2020 Feb 26.

Pathway-based signature transcriptional profiles as tolerance phenotypes for the adapted industrial yeast Saccharomyces cerevisiae resistant to furfural and HMF

Affiliations

Pathway-based signature transcriptional profiles as tolerance phenotypes for the adapted industrial yeast Saccharomyces cerevisiae resistant to furfural and HMF

Z Lewis Liu et al. Appl Microbiol Biotechnol. 2020 Apr.

Abstract

The industrial yeast Saccharomyces cerevisiae has a plastic genome with a great flexibility in adaptation to varied conditions of nutrition, temperature, chemistry, osmolarity, and pH in diversified applications. A tolerant strain against 2-furaldehyde (furfural) and 5-hydroxymethyl-2-furaldehyde (HMF) was successfully obtained previously by adaptation through environmental engineering toward development of the next-generation biocatalyst. Using a time-course comparative transcriptome analysis in response to a synergistic challenge of furfural-HMF, here we report tolerance phenotypes of pathway-based transcriptional profiles as components of the adapted defensive system for the tolerant strain NRRL Y-50049. The newly identified tolerance phenotypes were involved in biosynthesis superpathway of sulfur amino acids, defensive reduction-oxidation reaction process, cell wall response, and endogenous and exogenous cellular detoxification. Key transcription factors closely related to these pathway-based components, such as Yap1, Met4, Met31/32, Msn2/4, and Pdr1/3, were also presented. Many important genes in Y-50049 acquired an enhanced transcription background and showed continued increased expressions during the entire lag phase against furfural-HMF. Such signature expressions distinguished tolerance phenotypes of Y-50049 from the innate stress response of its progenitor NRRL Y-12632, an industrial type strain. The acquired yeast tolerance is believed to be evolved in various mechanisms at the genomic level. Identification of legitimate tolerance phenotypes provides a basis for continued investigations on pathway interactions and dissection of mechanisms of yeast tolerance and adaptation at the genomic level.

Keywords: Adaptation; Defensive system; Pathway; Stress tolerance; Tolerance phenotype.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Abdulrehman D, Monteiro PT, Teixeira MC, Mira NP, Lourenço AB, dos Santos SC, Cabrito TR, Francisco AP, Madeira SC, Aires RS, Oliveira AL, Sá-Correia I, Freitas AT (2010) YEASTRACT: providing a programmatic access to curated transcriptional regulatory associations in Saccharomyces cerevisiae through a web services interface. Nucleic Acids Res 39:D136–D140 - DOI - PubMed - PMC
    1. Alenquer M, Tenreiro S, Sá-Correia I (2006) Adaptive response to the antimalarial drug artesunate in yeast involves Pdr1p/Pdr3p-mediated transcriptional activation of the resistance determinants TPO1and PDR5. FEMS Yeast Res 6:1130–1139 - DOI - PubMed
    1. Allen SA, Clark W, McCaffery JM, Cai Z, Lanctot A, Slininger PJ, Liu ZL, Gorsich SW (2010) Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae. Biotechnol Biofuels 3:2 - DOI - PubMed - PMC
    1. Alriksson B, Horváth IS, Jönsson LJ (2010) Overexpression of Saccharomyces cerevisiae transcription factor and multidrug resistance genes conveys enhanced resistance to lignocellulose derived fermentation inhibitors. Process Biochem 45:264–271 - DOI
    1. Aranda A, del Olmo ML (2004) Exposure of Saccharomyces cerevisiae to acetaldehyde induces sulfur amino acid metabolism and polyamine transporter genes, which depend on Met4p and Haa1p transcription factors, respectively. Appl Environ Microbiol 70:1913–1922 - DOI - PubMed - PMC

MeSH terms