Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Feb 13:13:33-42.
doi: 10.2147/SCCAA.S166759. eCollection 2020.

Dental Pulp Stem Cells: Advances to Applications

Affiliations
Review

Dental Pulp Stem Cells: Advances to Applications

Takeo W Tsutsui. Stem Cells Cloning. .

Abstract

Dental pulp stem cells (DPSCs) have a high capacity for differentiation and the ability to regenerate a dentin/pulp-like complex. Numerous studies have provided evidence of DPSCs' differentiation capacity, such as in neurogenesis, adipogenesis, osteogenesis, chondrogenesis, angiogenesis, and dentinogenesis. The molecular mechanisms and functions of DPSCs' differentiation process are affected by growth factors and scaffolds. For example, growth factors such as basic fibroblast growth factor (bFGF), transforming growth factor-β (TGF-β), nerve growth factor (NGF), platelet-derived growth factor (PDGF), and bone morphogenic proteins (BMPs) influence DPSC fate, including in differentiation, cell proliferation, and wound healing. In addition, several types of scaffolds, such as collagen, hydrogel, decellularized bioscaffold, and nanofibrous spongy microspheres, have been used to characterize DPSC cellular attachment, migration, proliferation, differentiation, and functions. An appropriate combination of growth factors and scaffolds can enhance the differentiation capacity of DPSCs, in terms of optimizing not only dental-related expression but also dental pulp morphology. For a cell-based clinical approach, focus has been placed on the tissue engineering triad [cells/bioactive molecules (growth factors)/scaffolds] to characterize DPSCs. It is clear that a deep understanding of the mechanisms of stem cells, including their aging, self-renewal, microenvironmental homeostasis, and differentiation correlated with cell activity, the energy for which is provided from mitochondria, should provide new approaches for DPSC research and therapeutics. Mitochondrial functions and dynamics are related to the direction of stem cell differentiation, including glycolysis, oxidative phosphorylation, mitochondrial metabolism, mitochondrial transcription factor A (TFAM), mitochondrial elongation, and mitochondrial fusion and fission proteins. This review summarizes the effects of major growth factors and scaffolds for regenerating dentin/pulp-like complexes, as well as elucidating mitochondrial properties of DPSCs for the development of advanced applications research.

Keywords: bioactive molecule; dental pulp stem cell; growth factor; mitochondria; regenerative therapy; scaffold.

PubMed Disclaimer

Conflict of interest statement

The author reports no conflicts of interest in this work.

References

    1. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A. 2000;97(25):13625–13630. doi:10.1073/pnas.240309797 - DOI - PMC - PubMed
    1. Smith AJ, Cassidy N, Perry H, Begue-Kirn C, Ruch JV, Lesot H. Reactionary dentinogenesis. Int J Dev Biol. 1995;39(1):273–280. - PubMed
    1. Kitamura C, Kimura K, Nakayama T, Terashita M. Temporal and spatial expression of c-jun and jun-B proto-oncogenes in pulp cells involved with reparative dentinogenesis after cavity preparation of rat molars. J Dent Res. 1999;78(2):673–680. doi:10.1177/00220345990780020701 - DOI - PubMed
    1. Bartold PM, Bianco P, Finkelstein MW, et al. Ten Cate’s Oral Histology: Development, Structure, and Function. 6 Mosby;2003.
    1. Shiba H, Fujita T, Doi N, et al. Differential effects of various growth factors and cytokines on the syntheses of DNA, type I collagen, laminin, fibronectin, osteonectin/secreted protein, acidic and rich in cysteine (SPARC), and alkaline phosphatase by human pulp cells in culture. J Cell Physiol. 1998;174(2):194–205. doi:10.1002/(ISSN)1097-4652 - DOI - PubMed