Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Apr:171:105879.
doi: 10.1016/j.mimet.2020.105879. Epub 2020 Feb 24.

An in-vitro dynamic flow model for translational research into dental unit water system biofilms

Affiliations
Free article

An in-vitro dynamic flow model for translational research into dental unit water system biofilms

Michel A Hoogenkamp et al. J Microbiol Methods. 2020 Apr.
Free article

Abstract

Dental unit water systems (DUWS) provide an excellent environment for biofilm formation and can form a potential health risk for patients and staff. To control this biofilm formation, better understanding of the DUWS biofilm ecology is needed. Described is a newly developed in-vitro DUWS model which is easy to build, can be inoculated with different water sources and allows for sampling of both the effluent and biofilm. Unlike most models, a dynamic flow pattern, typical for a dental unit is used to provide water as a nutrient source. Microbial growth and composition were analyzed using heterotrophic plate counts (HPC) and 16S rDNA sequencing. Growth was reproducible in all models, reaching quasi-steady state at day 16 in the effluent (105-106 CFU∙mL-1) and day 23 in the biofilm (108 and 107 CFU∙cm-2) for non-potable and potable water, respectively. Principal component analysis of the microbial composition showed that biofilms originating from either non-potable or potable water were significantly different after 30 days of growth (n = 8, PERMANOVA, F = 35.6, p < .005). Treatment of the biofilms with 1000 ppm active chlorine showed a biological and statistical significant decrease in viable counts in the effluent phase to below the detection limit of 100 CFU∙mL-1. The HPC returned to pre-treatment levels within 14 days. Using this model results in inoculum dependent biofilms with a higher bacterial density compared to previously described models. The relative ease in which samples can be taken allows for the monitoring of antimicrobial disinfection efficacy on the effluent, biofilm and matrix.

Keywords: Biofilm; Chlorination; DUWS model; Disinfection; Effluent; Resilience.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources