Traditional Uses, Bioactive Chemical Constituents, and Pharmacological and Toxicological Activities of Glycyrrhiza glabra L. (Fabaceae)
- PMID: 32106571
- PMCID: PMC7175350
- DOI: 10.3390/biom10030352
Traditional Uses, Bioactive Chemical Constituents, and Pharmacological and Toxicological Activities of Glycyrrhiza glabra L. (Fabaceae)
Abstract
Traditional herbal remedies have been attracting attention as prospective alternative resources of therapy for diverse diseases across many nations. In recent decades, medicinal plants have been gaining wider acceptance due to the perception that these plants, as natural products, have fewer side effects and improved efficacy compared to their synthetic counterparts. Glycyrrhiza glabra L. (Licorice) is a small perennial herb that has been traditionally used to treat many diseases, such as respiratory disorders, hyperdipsia, epilepsy, fever, sexual debility, paralysis, stomach ulcers, rheumatism, skin diseases, hemorrhagic diseases, and jaundice. Moreover, chemical analysis of the G. glabra extracts revealed the presence of several organic acids, liquirtin, rhamnoliquirilin, liquiritigenin, prenyllicoflavone A, glucoliquiritin apioside, 1-metho-xyphaseolin, shinpterocarpin, shinflavanone, licopyranocoumarin, glisoflavone, licoarylcoumarin, glycyrrhizin, isoangustone A, semilicoisoflavone B, licoriphenone, and 1-methoxyficifolinol, kanzonol R and several volatile components. Pharmacological activities of G. glabra have been evaluated against various microorganisms and parasites, including pathogenic bacteria, viruses, and Plasmodium falciparum, and completely eradicated P. yoelii parasites. Additionally, it shows antioxidant, antifungal, anticarcinogenic, anti-inflammatory, and cytotoxic activities. The current review examined the phytochemical composition, pharmacological activities, pharmacokinetics, and toxic activities of G. glabra extracts as well as its phytoconstituents.
Keywords: Glycyrrhiza glabra; herbal remedies; pharmacokinetics; pharmacological activities; phytoconstituents.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
References
-
- Batiha G.E.S., Beshbishy A.M., Tayebwa D.S., Adeyemi O.S., Shaheen H., Yokoyama N., Igarashi I. Evaluation of the inhibitory effect of ivermectin on the growth of Babesia and Theileria parasites in vitro and in vivo. Trop. Med. Health. 2019;47:42. doi: 10.1186/s41182-019-0171-8. - DOI - PMC - PubMed
-
- Batiha G.E.S., Beshbishy A.A., Tayebwa D.S., Shaheen M.H., Yokoyama N., Igarashi I. Inhibitory effects of Uncaria tomentosa bark, Myrtus communis roots, Origanum vulgare leaves and Cuminum cyminum seeds extracts against the growth of Babesia and Theileria in vitro. Jap. J. Vet. Parasitol. 2018;17:1–13.
-
- Batiha G.-S., Beshbishy A.M., Alkazmi L.M., Adeyemi O.S., Nadwa E.H., Rashwan E.K., El-Mleeh A., Igarashi I. Gas chromatography-mass spectrometry analysis, phytochemical screening and antiprotozoal effects of the methanolic Viola tricolor and acetonic Laurus nobilis extracts. BMC Complement. Altern. Med. 2020 in press. - PMC - PubMed
-
- Beshbishy A.M., Batiha G.E.S., Adeyemi O.S., Yokoyama N., Igarashi I. Inhibitory effects of methanolic Olea europaea and acetonic Acacia laeta on the growth of Babesia and Theileria. Asian Pac. J. Trop. Med. 2019;12:425–434.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
