Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Feb 28;367(6481):1030-1034.
doi: 10.1126/science.aax3520.

Kinetic pathways of ionic transport in fast-charging lithium titanate

Affiliations
Free article

Kinetic pathways of ionic transport in fast-charging lithium titanate

Wei Zhang et al. Science. .
Free article

Abstract

Fast-charging batteries typically use electrodes capable of accommodating lithium continuously by means of solid-solution transformation because they have few kinetic barriers apart from ionic diffusion. One exception is lithium titanate (Li4Ti5O12), an anode exhibiting extraordinary rate capability apparently inconsistent with its two-phase reaction and slow Li diffusion in both phases. Through real-time tracking of Li+ migration using operando electron energy-loss spectroscopy, we reveal that facile transport in Li4+ x Ti5O12 is enabled by kinetic pathways comprising distorted Li polyhedra in metastable intermediates along two-phase boundaries. Our work demonstrates that high-rate capability may be enabled by accessing the energy landscape above the ground state, which may have fundamentally different kinetic mechanisms from the ground-state macroscopic phases. This insight should present new opportunities in searching for high-rate electrode materials.

PubMed Disclaimer

Publication types