Female ageing affects the DNA repair capacity of oocytes in IVF using a controlled model of sperm DNA damage in mice
- PMID: 32108237
- DOI: 10.1093/humrep/dez308
Female ageing affects the DNA repair capacity of oocytes in IVF using a controlled model of sperm DNA damage in mice
Abstract
Study question: Does female ageing have a negative effect on the DNA repair capacity of oocytes fertilised by spermatozoa with controlled levels of DNA damage?
Summary answer: Compared to oocytes from younger females, oocytes from older females have a reduced capacity to repair damaged DNA introduced by spermatozoa.
What is known already: The reproductive lifespan in women declines with age predominantly due to poor oocyte quality. This leads to decreased reproductive outcomes for older women undergoing assisted reproductive technology (ART) treatments, compared to young women. Ageing and oocyte quality have been clearly associated with aneuploidy, but the range of factors that influence this change in oocyte quality with age remains unclear. The DNA repair activity prior to embryonic genomic activation is considered to be of maternal origin, with maternal transcripts and proteins controlling DNA integrity. With increasing maternal age, the number of mRNAs stored in oocytes decreases. This could result in diminished efficiency of DNA repair and/or negative effects on embryo development, especially in the presence of DNA damage.
Study design, size, duration: Oocytes from two age groups of 30 super-ovulated female mice (young: 5-8 weeks old, n = 15; old: 42-45 weeks old, n = 15) were inseminated with sperm from five males with three different controlled DNA damage levels; control: ≤10%, 1 Gray (Gy): 11-30%, and 30 Gy: >30%. Inseminated oocytes (young: 125, old: 78) were assessed for the formation of zygotes (per oocyte) and blastocysts (per zygote). Five replicates of five germinal vesicles (GVs) and five MII oocytes from each age group were analysed for gene expression. The DNA damage response (DDR) was assessed in a minimum of three IVF replicates in control and 1 Gy zygotes and two-cell embryos using γH2AX labelling.
Participants/materials, setting, methods: Swim-up sperm samples from the cauda epididymidis of C57BL6 mice were divided into control (no irradiation) and 1- and 30-Gy groups. Treated spermatozoa were irradiated at 1 and 30 Gy, respectively, using a linear accelerator Varian 21iX. Following irradiation, samples were used for DNA damage assessment (Halomax) and for insemination. Presumed zygotes were cultured in a time-lapse incubator (MIRI, ESCO). Gene expression of 91 DNA repair genes was assessed using the Fluidigm Biomark HD system. The DNA damage response in zygotes (6-8 h post-fertilisation) and two-cell embryos (22-24 h post-fertilisation) was assessed by immunocytochemical analysis of γH2AX using confocal microscopy (Olympus FV1200) and 3D volumetric analysis using IMARIS software.
Main results and the role of chance: The average sperm DNA damage for the three groups was statistically different (control: 6.1%, 1 Gy: 16.1%, 30 Gy: 53.1%, P < 0.0001), but there were no significant differences in fertilisation rates after IVF within or between the two age groups [(young; control: 86.79%, 1 Gy: 82.75%, 30 Gy: 76.74%) (old; control: 93.1%, 1 Gy: 70.37%, 30 Gy: 68.18%) Fisher's exact]. However, blastocyst rates were significantly different (P < 0.0001) among the groups [(young; control: 86.95%, 1 Gy: 33.33%, 30 Gy: 0.0%) (old; control: 70.37%, 1 Gy: 0.0%, 30 Gy: 0.0%)]. Between the age groups, 1-Gy samples showed a significant decrease in the blastocyst rate in old females compared to young females (P = 0.0166). Gene expression analysis revealed a decrease in relative expression of 21 DNA repair genes in old GV oocytes compared to young GV oocytes (P < 0.05), and similarly, old MII oocytes showed 23 genes with reduced expression compared to young MII oocytes (P < 0.05). The number of genes with decreased expression in older GV and MII oocytes significantly affected pathways such as double strand break (GV: 5; MII: 6), nucleotide excision repair (GV: 8; MII: 5) and DNA damage response (GV: 4; MII: 8). There was a decreased DDR in zygotes and in two-cell embryos from old females compared to young regardless of sperm treatment (P < 0.05). The decrease in DNA repair gene expression of oocytes and decreased DDR in embryos derived from older females suggests that ageing results in a diminished DNA repair capacity.
Large-scale data: N/A.
Limitations, reasons for caution: Ionising radiation was used only for experimental purposes, aiming at controlled levels of sperm DNA damage; however, it can also damage spermatozoa proteins. The female age groups selected in mice were intended to model effects in young and old women, but clinical studies are required to demonstrate a similar effect.
Wider implications of the findings: Fertilisation can occur with sperm populations with medium and high DNA damage, but subsequent embryo growth is affected to a greater extent with aging females, supporting the theory that oocyte DNA repair capacity decreases with age. Assessment of the oocyte DNA repair capacity may be a useful diagnostic tool for infertile couples.
Study funding/competing interest(s): Funded by the Education Program in Reproduction and Development, Department of Obstetrics and Gynaecology, Monash University. None of the authors has any conflict of interest to report.
Keywords: ART; IVF; female ageing; oocyte DNA repair; sperm DNA damage.
© The Author(s) 2020. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.
Similar articles
-
Germline nuclear transfer in mice may rescue poor embryo development associated with advanced maternal age and early embryo arrest.Hum Reprod. 2020 Jul 1;35(7):1562-1577. doi: 10.1093/humrep/deaa112. Hum Reprod. 2020. PMID: 32613230
-
How to identify patients who would benefit from delayed-matured oocytes insemination: a sibling oocyte and ploidy outcome study.Hum Reprod. 2023 Aug 1;38(8):1473-1483. doi: 10.1093/humrep/dead129. Hum Reprod. 2023. PMID: 37344149
-
Role of Sirt3 in mitochondrial biogenesis and developmental competence of human in vitro matured oocytes.Hum Reprod. 2016 Mar;31(3):607-22. doi: 10.1093/humrep/dev345. Epub 2016 Jan 18. Hum Reprod. 2016. PMID: 26787646
-
DNA repair and response to sperm DNA damage in oocytes and embryos, and the potential consequences in ART: a systematic review.Mol Hum Reprod. 2022 Jan 4;28(1):gaab071. doi: 10.1093/molehr/gaab071. Mol Hum Reprod. 2022. PMID: 34954800
-
DNA damage in preimplantation embryos and gametes: specification, clinical relevance and repair strategies.Hum Reprod Update. 2022 May 2;28(3):376-399. doi: 10.1093/humupd/dmab046. Hum Reprod Update. 2022. PMID: 35021196 Free PMC article. Review.
Cited by
-
The DNA Damage Response in Fully Grown Mammalian Oocytes.Cells. 2022 Feb 24;11(5):798. doi: 10.3390/cells11050798. Cells. 2022. PMID: 35269420 Free PMC article. Review.
-
Sperm DNA fragmentation testing: Summary evidence and clinical practice recommendations.Andrologia. 2021 Mar;53(2):e13874. doi: 10.1111/and.13874. Epub 2020 Oct 27. Andrologia. 2021. PMID: 33108829 Free PMC article. Review.
-
Age-Related COVID-19 Influence on Male Fertility.Int J Mol Sci. 2023 Oct 30;24(21):15742. doi: 10.3390/ijms242115742. Int J Mol Sci. 2023. PMID: 37958725 Free PMC article.
-
Sperm DNA integrity does play a crucial role for embryo development after ICSI, notably when good-quality oocytes from young donors are used.Biol Res. 2022 Dec 26;55(1):41. doi: 10.1186/s40659-022-00409-y. Biol Res. 2022. PMID: 36572948 Free PMC article.
-
Male reproductive ageing: a radical road to ruin.Hum Reprod. 2023 Oct 3;38(10):1861-1871. doi: 10.1093/humrep/dead157. Hum Reprod. 2023. PMID: 37568254 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Research Materials