Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jun 1:152:645-662.
doi: 10.1016/j.ijbiomac.2020.02.266. Epub 2020 Feb 25.

Physical, mechanical and biological performance of PHB-Chitosan/MWCNTs nanocomposite coating deposited on bioglass based scaffold: Potential application in bone tissue engineering

Affiliations

Physical, mechanical and biological performance of PHB-Chitosan/MWCNTs nanocomposite coating deposited on bioglass based scaffold: Potential application in bone tissue engineering

Maryam Parvizifard et al. Int J Biol Macromol. .

Erratum in

Abstract

Nowadays, using the nanocomposite coatings on bioceramic scaffolds is a great interest for many researchers to improve the properties of these scaffolds. In this study, the effect of poly (3-hydroxybutyrate) PHB-Chitosan (Cs)/multi-walled carbon nanotubes (MWCNTs) nanocomposite coating deposited on nano-bioglass (nBG)-titania (nTiO2) scaffolds fabricated by foam replication method was investigated. Structural analyses such as XRD and FT-IR confirmed the presence of PHB, Cs and MWCNTs in the coated scaffolds. The results of SEM and porosity measurement showed that even with 1 wt% MWCNTs, scaffolds have a high percentage of interconnected porosity. The compressive strength of the scaffolds coated with PHB-Cs/MWCNTs (1 wt%) was increased up to 30 folds compared to nBG/nTiO2 scaffold. The surface roughness of the coated scaffolds, which was determined by AFM, was increased. The nanocomposite coating caused a decrease in contact angle and retaining the negative zeta potential of the coated scaffolds. The increase in pH and degradation rate was observed in the coated scaffolds. Increasing the apatite-like formation by the presence of PHB-Cs/MWCNTs was confirmed by SEM, EDAX and XRD tests. PHB-Chitosan/MWCNTs nanocomposite coating lead to more proliferation and viability of MG-63 cells and higher secretion of alkaline phosphatase.

Keywords: Bioglass; Carbon nanotubes; Chitosan; Polyhydroxybutyrate; Tissue engineering; Titania.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources