Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jan 28;9(1):180-186.
doi: 10.4103/jfmpc.jfmpc_908_19. eCollection 2020 Jan.

Antibacterial activity of Syzygium aromaticum (clove) against uropathogens producing ESBL, MBL, and AmpC beta-lactamase: Are we close to getting a new antibacterial agent?

Affiliations

Antibacterial activity of Syzygium aromaticum (clove) against uropathogens producing ESBL, MBL, and AmpC beta-lactamase: Are we close to getting a new antibacterial agent?

Sameer S Faujdar et al. J Family Med Prim Care. .

Abstract

Introduction: The present study was done to access the antibacterial activity of clove (Syzygium aromaticum) against extended-spectrum beta-lactamase (ESBL), metallo-beta-lactamase (MBL), and AmpC beta-lactamase-producing gram-negative bacteria causing urinary tract infection.

Methods: A total of 221 gram-negative uropathogens were isolated and screened for beta-lactamase (ESBL, MBL, and AmpC) production and further tested against ethanolic extract of clove (S. aromaticum) for its antibacterial activity.

Results: Clove was effective against all gram-negative isolates but the best antibacterial activity was shown against Proteus species with 19 mm zone of inhibition, 0.39 mg/ml minimum inhibitory concentration (MIC) and 0.19 mg/ml minimum bactericidal concentration (MBC).

Conclusions: Clove extract showed different antibacterial potential against all gram-negative uropathogens. Clove activity for particular strain was found to be similar between isolates producing beta-lactamase and non beta-lactamase.

Keywords: Extended-spectrum β-lactamases; Syzygium aromaticum (clove); and AmpC beta-lactamase; metallo-beta-lactamase; urinary tract infection; uropathogens.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts of interest.

Figures

Figure 1
Figure 1
Maximum zone of inhibition (mm) of clove against uropathogens
Figure 2
Figure 2
Average minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of clove against uropathogens

Similar articles

Cited by

References

    1. Moroh J-LA, Fleury Y, Tia H, Bahi C, Lietard C, Coroller L, et al. Diversity and antibiotic resistance of uropathogenic bacteria from Abidjan. Afr J Urol. 2014;20:18–24.
    1. Farajnia S, Alikhani MY, Ghotaslou R, Naghili B, Nakhlband A. Causative agents and antimicrobial susceptibilities of urinary tract infections in the northwest of Iran. Int J Infect Dis. 2009;13:140–4. - PubMed
    1. Baral P, Neupane S, Marasini BP, Ghimire KR, Lekhak B, Shrestha B. High prevalence of multidrug resistance in bacterial uropathogens from Kathmandu, Nepal. BMC Res Notes. 2012;5:38. - PMC - PubMed
    1. Sultan A, Rizvi M, Khan F, Sami H, Shukla I, Khan HM. Increasing antimicrobial resistance among uropathogens: Is fosfomycin the answer? Urol Ann. 2015;7:26–30. - PMC - PubMed
    1. Ahmad I, Beg AZ. Antimicrobial and phytochemical studies on 45 Indian medicinal plants against multi-drug resistant human pathogens. J Ethnopharmacol. 2001;74:113–23. - PubMed