Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Feb 26;12(3):535.
doi: 10.3390/cancers12030535.

Mass Spectrometry-Based Identification of MHC-Associated Peptides

Affiliations
Review

Mass Spectrometry-Based Identification of MHC-Associated Peptides

Sachin Kote et al. Cancers (Basel). .

Abstract

Neoantigen-based immunotherapies promise to improve patient outcomes over the current standard of care. However, detecting these cancer-specific antigens is one of the significant challenges in the field of mass spectrometry. Even though the first sequencing of the immunopeptides was done decades ago, today there is still a diversity of the protocols used for neoantigen isolation from the cell surface. This heterogeneity makes it difficult to compare results between the laboratories and the studies. Isolation of the neoantigens from the cell surface is usually done by mild acid elution (MAE) or immunoprecipitation (IP) protocol. However, limited amounts of the neoantigens present on the cell surface impose a challenge and require instrumentation with enough sensitivity and accuracy for their detection. Detecting these neopeptides from small amounts of available patient tissue limits the scope of most of the studies to cell cultures. Here, we summarize protocols for the extraction and identification of the major histocompatibility complex (MHC) class I and II peptides. We aimed to evaluate existing methods in terms of the appropriateness of the isolation procedure, as well as instrumental parameters used for neoantigen detection. We also focus on the amount of the material used in the protocols as the critical factor to consider when analyzing neoantigens. Beyond experimental aspects, there are numerous readily available proteomics suits/tools applicable for neoantigen discovery; however, experimental validation is still necessary for neoantigen characterization.

Keywords: Neoantigens; cancer; immunoprecipitation; mass spectrometry; mild acid elution.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflicts of interest.

Figures

Figure 1
Figure 1
Methods for major histocompatibility complex (MHC) peptide isolation. (A) Acid wash and (B) immunoprecipitation (IP)-based purification. Reprinted with permission from Schumacher et al. [25], copyright year 2017, John Wiley and Sons.
Figure 2
Figure 2
Derivatization reaction to increase sequence coverage and ionization efficiency of peptides. (A) Scheme of the derivatization and (B) tandem MS spectra of synthetic peptide (SVATITGV) in native, dimethylated, and alkylamidated form. Reprinted with permission from Chen et al. [39], copyright year 2018, American Chemical Society.

References

    1. Zhang X., Qi Y., Zhang Q., Liu W. Application of mass spectrometry-based MHC immunopeptidome profiling in neoantigen identification for tumor immunotherapy. Biomed. Pharmacother. 2019:120. doi: 10.1016/j.biopha.2019.109542. - DOI - PubMed
    1. Sahin U., Türeci Ö. Personalized vaccines for cancer immunotherapy. Science. 2018;359:1355–1360. doi: 10.1126/science.aar7112. - DOI - PubMed
    1. Hodi F.S., O’Day S.J., McDermott D.F., Weber R.W., Sosman J.A., Haanen J.B., Gonzalez R., Robert C., Schadendorf D., Hassel J.C., et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 2010;363:711–723. doi: 10.1056/NEJMoa1003466. - DOI - PMC - PubMed
    1. Larkin J., Chiarion-Sileni V., Gonzalez R., Grob J.J., Cowey C.L., Lao C.D., Schadendorf D., Dummer R., Smylie M., Rutkowski P., et al. Combined nivolumab and ipilimumab or monotherapy in untreated Melanoma. N. Engl. J. Med. 2015;373:23–34. doi: 10.1056/NEJMoa1504030. - DOI - PMC - PubMed
    1. Schumacher T.N., Schreiber R.D. Neoantigens in cancer immunotherapy. Science. 2015;348:69–74. doi: 10.1126/science.aaa4971. - DOI - PubMed