Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Feb 28;11(1):91.
doi: 10.1186/s13287-020-01612-y.

Mesenchymal stem cells regulate the Th17/Treg cell balance partly through hepatocyte growth factor in vitro

Affiliations

Mesenchymal stem cells regulate the Th17/Treg cell balance partly through hepatocyte growth factor in vitro

Qi-Hong Chen et al. Stem Cell Res Ther. .

Abstract

Introduction: Mesenchymal stem cells (MSCs) exert immunomodulatory functions by inducing the development and differentiation of naive T cells into T cells with an anti-inflammatory regulatory T cell (Treg) phenotype. Our previous study showed that hepatocyte growth factor (HGF) secreted by MSCs had immunomodulatory effects in the context of lipopolysaccharide (LPS) stimulation. We hypothesized that HGF is a key factor in the MSC-mediated regulation of the T helper 17 (Th17) cell/regulatory T (Treg) cell balance.

Methods: We investigated the effects of MSCs on the differentiation of CD4+ T cells and the functions of Th17/Treg cells in response to LPS stimulation by performing in vitro coculture experiments. MSCs were added to the upper chambers of cell culture inserts, and CD4+ T cells were plated in the lower chambers, followed by treatment with LPS or an anti-HGF antibody. Th17 (CD4+CD3+RORrt+) and Treg (CD4+CD25+Foxp3+) cell frequencies were analysed by flow cytometry, and the expression of Th17 cell- and Treg cell-related cytokines in the CD4+ T cells or culture medium was measured by quantitative PCR (qPCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Neutrophil functions were determined by flow cytometry after a coculture with Th17/Treg cells.

Results: The percentage of CD4+CD25+Foxp3+ cells was significantly increased in the CD4+ T cell population, while the percentage of CD4+CD3+RORrt+ cells was significantly decreased after MSC coculture. However, the MSC-induced effect was significantly inhibited by the anti-HGF antibody (p < 0.05). Furthermore, MSCs significantly inhibited the CD4+ T cell expression of IL-17 and IL-6 but increased the expression of IL-10 (p < 0.05 or p < 0.01); these effects were inhibited by the anti-HGF antibody (p < 0.05). In addition, CD4+ T cells cocultured with MSCs significantly inhibited neutrophil phagocytic and oxidative burst activities (p < 0.05 or p < 0.01); however, these MSC-induced effects were inhibited by the anti-HGF antibody (p < 0.05).

Conclusion: These data suggested that MSCs induced the conversion of fully differentiated Th17 cells into functional Treg cells and thereby modulated the Th17/Treg cell balance in the CD4+ T cell population, which was partly attributed to HGF secreted by the MSCs.

Keywords: Hepatocyte growth factor; Mesenchymal stem cells; Th17; Treg.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Flow cytometry identification of mouse mesenchymal stem cells (MSCs). Cell surface markers of MSCs, including CD44, CD29, CD117, CD31, CD34 and Sca-1, were analysed with flow cytometry. Red lines represent the isotype controls. Cytofluorometric analyses showed the presence of several molecules such as CD44, CD29, CD34 and Sca-1 but not the presence of CD117 or CD31
Fig. 2
Fig. 2
The modulatory effect of HGF secreted by MSCs on Th17/Treg cell differentiation in CD4+ T cells analysed by flow cytometry. The results showed that the percentage of CD4+CD25+Foxp3+ cells was significantly increased in the CD4+ T cell population, but the MSC-induced effect was significantly inhibited by an anti-HGF antibody (p < 0.05, a, c). The percentage of CD4+CD3+RORrt+ cells was significantly decreased after MSC coculture. However, the MSC-induced effect was significantly inhibited by the anti-HGF antibody (p < 0.05, b, d) (n = 3; *p < 0.05 or **p < 0.01 vs. the CD4+ group; #p < 0.05 vs. the MSC+CD4+ group). MSCs, mesenchymal stem cells; rmHGF, recombinant mouse hepatocyte growth factor
Fig. 3
Fig. 3
The regulatory effect of HGF secreted by MSCs on cytokine mRNA expression in CD4+ T cells analysed by qPCR. The results showed that MSCs significantly increased IL-10 (p < 0.05, a) and TGF-β (p < 0.01, b) mRNA expression and inhibited IL-17 (p < 0.01, c) and IL-6 (p < 0.05, d) mRNA expression in CD4+ T cells. However, the MSC-induced effects were inhibited by an anti-HGF antibody (p < 0.05 or p < 0.01) (n = 3; *p < 0.05 or **p < 0.01 vs. the CD4+ group; #p < 0.05 or ##p < 0.01 vs. the MSC+CD4+ group). MSCs, mesenchymal stem cells; rmHGF, recombinant mouse hepatocyte growth factor; qPCR, quantitative polymerase chain reaction
Fig. 4
Fig. 4
The regulatory effect of HGF secreted by MSCs on cytokine production in CD4+ T cells detected by ELISA. We found that MSCs significantly increased the CD4+ T cell secretion of IL-10 (p < 0.01, a) and TGF-β (p < 0.01, b) but inhibited the CD4+ T cell secretion of IL-17 (p < 0.05, c) and IL-6 (p < 0.01, d). However, the MSC-induced effects were inhibited by an anti-HGF antibody (p < 0.05 or p < 0.01) (n = 3; *p < 0.05 or **p < 0.01 vs. the CD4+ group; #p < 0.05 or ##p < 0.01 vs. the MSC+CD4+ group). MSCs, mesenchymal stem cells; rmHGF, recombinant mouse hepatocyte growth factor
Fig. 5
Fig. 5
The regulatory effect of HGF secreted by MSCs on neutrophil activities in cells cocultured with CD4+ T cells and analysed with flow cytometry. The results indicated that CD4+ T cells cocultured with MSCs significantly inhibited neutrophil phagocytic (p < 0.05, a) and oxidative burst activities (p < 0.01, b). However, the effects of the CD4+ T cells were inhibited by an anti-HGF antibody (p < 0.05 or p < 0.01) (n = 3; *p < 0.05 or **p < 0.01 vs. the CD4+ group; #p < 0.05 or ##p < 0.01 vs. the MSC+CD4+ group). MSCs, mesenchymal stem cells; rmHGF, recombinant mouse hepatocyte growth factor
Fig. 6
Fig. 6
The regulatory effect of HGF secreted by MSCs on CD40+ and CD80+ monocyte activation in cocultures with CD4+ T cells and analysed with flow cytometry. The results showed that after being cocultured with MSCs, CD4+ T cells significantly inhibited monocyte expression of CD40 (p < 0.05, a) and CD80 (p < 0.05, b). However, the CD4+ T cell-mediated effect was inhibited by an anti-HGF antibody (p < 0.01) (n = 3; *p < 0.05 vs. the CD4+ group; ##p < 0.01 vs. the MSC+CD4+ group). MSCs, mesenchymal stem cells; rmHGF, recombinant mouse hepatocyte growth factor
Fig. 7
Fig. 7
The regulatory effect of HGF secreted by MSCs on MHC-II and TLR-2 expression in monocytes cocultured with CD4+ T cells and analysed with flow cytometry. The results showed that after being cocultured with MSCs, CD4+ T cells significantly inhibited monocyte expression of MHC-II (p < 0.01, a) and TLR2 (p < 0.05, b). However, the CD4+ T cell-mediated effect was inhibited by an anti-HGF antibody (p < 0.05 or p < 0.01) (n = 3; *p < 0.05 or **p < 0.01 vs. the CD4+ group; ##p < 0.01 vs. the MSC+CD4+ group). MSCs, mesenchymal stem cells; rmHGF, recombinant mouse hepatocyte growth factor

References

    1. Villar J, Zhang H, Slutsky AS. Lung repair and regeneration in ARDS: role of PECAM1 and Wnt signaling. Chest. 2019;155(3):587–594. doi: 10.1016/j.chest.2018.10.022. - DOI - PMC - PubMed
    1. Matthay MA, Zemans RL, Zimmerman GA, et al. Acute respiratory distress syndrome. Nat Rev Dis Primers. 2019;5(1):18. doi: 10.1038/s41572-019-0069-0. - DOI - PMC - PubMed
    1. Reiss LK, Schuppert A, Uhlig S. Inflammatory processes during acute respiratory distress syndrome: a complex system. Curr Opin Crit Care. 2018;24(1):1–9. doi: 10.1097/MCC.0000000000000472. - DOI - PubMed
    1. Adamzik M, Broll J, Steinmann J, Westendorf AM, et al. An increased alveolar CD4 + CD25 + Foxp3 + T-regulatory cell ratio in acute respiratory distress syndrome is associated with increased 30-day mortality. Intensive Care Med. 2013;39(10):1743–1751. doi: 10.1007/s00134-013-3036-3. - DOI - PMC - PubMed
    1. Zhu G, Liu Y, Zhang W, et al. CD27+TIM-1+ memory B cells promoted the development of Foxp3+ Tregs and were associated with better survival in acute respiratory distress syndrome. Immunol Res. 2018;66(2):281–287. doi: 10.1007/s12026-017-8983-2. - DOI - PubMed

Publication types

Substances