Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Dec 30;68(Suppl 4):S405-S413.
doi: 10.33549/physiolres.934378.

Pineal gland calcification under hypoxic conditions

Affiliations
Free article

Pineal gland calcification under hypoxic conditions

M Kopáni et al. Physiol Res. .
Free article

Abstract

The pineal gland (glandula pinealis) is neuroendocrine gland located at the epithalamus of the brain secreting melatonin. The aim of this study was to explore effects of prenatal hypoxia in rats at the age of 33 weeks on the occurrence of pineal gland calcification. Distribution and chemical composition of calcerous material by light, scanning and transmission electron microscopy was investigated. Melatonin concentrations in blood plasma by direct radioimmunoassay were measured. Rats were exposed to prenatal hypoxia for 12 h at day 20 of development and second group to prenatal hypoxia for 2x8 h at days 19 and 20 of development. Vacuoles of intracellular edema in the pineal samples after 12 h hypoxia were found. Their size ranges up to 30 µm. Some of them were filled with the flocculent and fibrous material. Samples of pineal glands after 2 x 8 h hypoxia revealed the pericellular edema of pinealocytes. The amount of calcium rich particles in 2 x 8 h hypoxia group was lower than in 12 h hypoxia group. Plasma melatonin levels did not differ between control and both hypoxia groups. We concluded that calcification is a process induced by osteoblasts and osteocytes with melatonin as a promotor and it is favored under hypoxic conditions.

PubMed Disclaimer