Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2020 Mar 2;3(3):CD009628.
doi: 10.1002/14651858.CD009628.pub2.

Structural magnetic resonance imaging for the early diagnosis of dementia due to Alzheimer's disease in people with mild cognitive impairment

Affiliations
Meta-Analysis

Structural magnetic resonance imaging for the early diagnosis of dementia due to Alzheimer's disease in people with mild cognitive impairment

Gemma Lombardi et al. Cochrane Database Syst Rev. .

Abstract

Background: Mild cognitive impairment (MCI) due to Alzheimer's disease is the symptomatic predementia phase of Alzheimer's disease dementia, characterised by cognitive and functional impairment not severe enough to fulfil the criteria for dementia. In clinical samples, people with amnestic MCI are at high risk of developing Alzheimer's disease dementia, with annual rates of progression from MCI to Alzheimer's disease estimated at approximately 10% to 15% compared with the base incidence rates of Alzheimer's disease dementia of 1% to 2% per year.

Objectives: To assess the diagnostic accuracy of structural magnetic resonance imaging (MRI) for the early diagnosis of dementia due to Alzheimer's disease in people with MCI versus the clinical follow-up diagnosis of Alzheimer's disease dementia as a reference standard (delayed verification). To investigate sources of heterogeneity in accuracy, such as the use of qualitative visual assessment or quantitative volumetric measurements, including manual or automatic (MRI) techniques, or the length of follow-up, and age of participants. MRI was evaluated as an add-on test in addition to clinical diagnosis of MCI to improve early diagnosis of dementia due to Alzheimer's disease in people with MCI.

Search methods: On 29 January 2019 we searched Cochrane Dementia and Cognitive Improvement's Specialised Register and the databases, MEDLINE, Embase, BIOSIS Previews, Science Citation Index, PsycINFO, and LILACS. We also searched the reference lists of all eligible studies identified by the electronic searches.

Selection criteria: We considered cohort studies of any size that included prospectively recruited people of any age with a diagnosis of MCI. We included studies that compared the diagnostic test accuracy of baseline structural MRI versus the clinical follow-up diagnosis of Alzheimer's disease dementia (delayed verification). We did not exclude studies on the basis of length of follow-up. We included studies that used either qualitative visual assessment or quantitative volumetric measurements of MRI to detect atrophy in the whole brain or in specific brain regions, such as the hippocampus, medial temporal lobe, lateral ventricles, entorhinal cortex, medial temporal gyrus, lateral temporal lobe, amygdala, and cortical grey matter.

Data collection and analysis: Four teams of two review authors each independently reviewed titles and abstracts of articles identified by the search strategy. Two teams of two review authors each independently assessed the selected full-text articles for eligibility, extracted data and solved disagreements by consensus. Two review authors independently assessed the quality of studies using the QUADAS-2 tool. We used the hierarchical summary receiver operating characteristic (HSROC) model to fit summary ROC curves and to obtain overall measures of relative accuracy in subgroup analyses. We also used these models to obtain pooled estimates of sensitivity and specificity when sufficient data sets were available.

Main results: We included 33 studies, published from 1999 to 2019, with 3935 participants of whom 1341 (34%) progressed to Alzheimer's disease dementia and 2594 (66%) did not. Of the participants who did not progress to Alzheimer's disease dementia, 2561 (99%) remained stable MCI and 33 (1%) progressed to other types of dementia. The median proportion of women was 53% and the mean age of participants ranged from 63 to 87 years (median 73 years). The mean length of clinical follow-up ranged from 1 to 7.6 years (median 2 years). Most studies were of poor methodological quality due to risk of bias for participant selection or the index test, or both. Most of the included studies reported data on the volume of the total hippocampus (pooled mean sensitivity 0.73 (95% confidence interval (CI) 0.64 to 0.80); pooled mean specificity 0.71 (95% CI 0.65 to 0.77); 22 studies, 2209 participants). This evidence was of low certainty due to risk of bias and inconsistency. Seven studies reported data on the atrophy of the medial temporal lobe (mean sensitivity 0.64 (95% CI 0.53 to 0.73); mean specificity 0.65 (95% CI 0.51 to 0.76); 1077 participants) and five studies on the volume of the lateral ventricles (mean sensitivity 0.57 (95% CI 0.49 to 0.65); mean specificity 0.64 (95% CI 0.59 to 0.70); 1077 participants). This evidence was of moderate certainty due to risk of bias. Four studies with 529 participants analysed the volume of the total entorhinal cortex and four studies with 424 participants analysed the volume of the whole brain. We did not estimate pooled sensitivity and specificity for the volume of these two regions because available data were sparse and heterogeneous. We could not statistically evaluate the volumes of the lateral temporal lobe, amygdala, medial temporal gyrus, or cortical grey matter assessed in small individual studies. We found no evidence of a difference between studies in the accuracy of the total hippocampal volume with regards to duration of follow-up or age of participants, but the manual MRI technique was superior to automatic techniques in mixed (mostly indirect) comparisons. We did not assess the relative accuracy of the volumes of different brain regions measured by MRI because only indirect comparisons were available, studies were heterogeneous, and the overall accuracy of all regions was moderate.

Authors' conclusions: The volume of hippocampus or medial temporal lobe, the most studied brain regions, showed low sensitivity and specificity and did not qualify structural MRI as a stand-alone add-on test for an early diagnosis of dementia due to Alzheimer's disease in people with MCI. This is consistent with international guidelines, which recommend imaging to exclude non-degenerative or surgical causes of cognitive impairment and not to diagnose dementia due to Alzheimer's disease. In view of the low quality of most of the included studies, the findings of this review should be interpreted with caution. Future research should not focus on a single biomarker, but rather on combinations of biomarkers to improve an early diagnosis of Alzheimer's disease dementia.

PubMed Disclaimer

Conflict of interest statement

Gemma Lombardi: none

Giada Crescioli: none

Enrica Cavedo: none

Ersilia Lucenteforte: none

Giovanni Casazza: none

Alessandro‐Giacco Bellatorre: none

Chiara Lista: none

Giorgio Costantino: none

Giovanni Frisoni: none

Gianni Virgili: none

Graziella Filippini: none

Figures

1
1
Figure 1. Flow of studies identified in literature search for systematic review on structural magnetic resonance imaging for an early diagnosis of dementia due to Alzheimer's disease in people with mild cognitive impairment
2
2
Risk of bias and applicability concerns summary: review authors' judgements about each domain for each included study
3
3
Forest plot of total hippocampal volume measured by structural magnetic resonance imaging (MRI) for early diagnosis of dementia due to Alzheimer's disease in people with mild cognitive impairment. Plot shows study‐specific estimates of sensitivity and specificity (squares) with 95% confidence interval (black line) and study. Studies are ordered according to the estimates of sensitivity. TP: true positive; FP: false positive; FN: false negative; TN: true negative
4
4
Summary receiver operating characteristic (ROC) plot of total hippocampus volume measured by structural magnetic resonance imaging (MRI) for early diagnosis of dementia due to Alzheimer's disease in people with mild cognitive impairment. Each point represents the pair of sensitivity and specificity from a study. The solid black circle represents the pooled sensitivity and specificity, which is surrounded by a 95% confidence region (dashed line)
5
5
Summary receiver operating characteristic curve (ROC) presenting direct comparisons of hippocampus left and hippocampus right
6
6
Summary receiver operating characteristic (ROC) plot of total medial temporal lobe volume measured by structural MRI for early diagnosis of dementia due to Alzheimer's disease in people with mild cognitive impairment. Each point represents the pair of sensitivity and specificity from a study. The solid black circle represents the pooled sensitivity and specificity, which is surrounded by a 95% confidence region (dashed line)
7
7
Summary receiver operating characteristic (ROC) plot of volume of lateral ventricles measured by structural magnetic resonance imaging (MRI) for early diagnosis of dementia due to Alzheimer's disease in people with mild cognitive impairment. Each point represents the pair of sensitivity and specificity from a study. The solid black circle represents the pooled sensitivity and specificity, which is surrounded by a 95% confidence region (dashed line)

Comment in

References

References to studies included in this review

Carmichael 2007 {published data only}
    1. Carmichael OT, Kuller LH, Lopez OL, Thompson PM, Dutton RA, Lu A, et al. Cerebral ventricular changes associated with transitions between normal cognitive function, mild cognitive impairment, and dementia. Alzheimer Disease and Associated Disorders 2007;21(1):14–24. [DOI: 10.1097/WAD.0b013e318032d2b1.] - DOI - PMC - PubMed
    1. Carmichael OT, Kuller LH, Lopez OL, Thompson PM, Dutton RA, Lu A, et al. Ventricular volume and dementia progression in the Cardiovascular Health Study. Neurobiology of Aging 2007;28(3):389‐97. [PUBMED: 16504345] - PMC - PubMed
    1. Yue NC, Arnold AM, Longstreth WT, Elster AD, Jungreis CA, O'Leary DH, et al. Sulcal, ventricular, and white matter changes at MRimaging in the aging brain: data from the Cardiovascular Health Study. Radiology 1997;202:33‐9. - PubMed
Caroli 2007 {published data only}
    1. Caroli A, Testa C, Geroldi C, Nobili F, Barnden LR, Guerra UP, et al. Cerebral perfusion correlates of conversion to Alzheimer’s disease in amnestic mild cognitive impairment. Journal of Neurology 2007;254:1698–707. [DOI: 10.1007/s00415-007-0631-7] - DOI - PubMed
Clerx 2013a {published data only}
    1. Clerx L, Pol L, Rueckert D, Jong R, Schijndel R, Verhey FRJ, et al. Comparison of measurements of medial temporal lobe atrophy in the prediction of Alzheimer's disease in subjects with MCI. Alzheimer's & Dementia 2011;7 Suppl 4:133.
    1. Clerx L, Rossum I, Burns L, Knol D, Scheltens P, Verhey FRJ, et al. MRI traits identify several loci influencing degeneration of the hippocampus lobe atrophy in the prediction of Alzheimer's disease in subjects with MCI. Alzheimer's & Dementia 2012;8 Suppl 4:738‐9.
    1. Clerx L, Rossum IA, Burns L, Knol DL, Scheltens P, Verhey F, et al. Measurements of medial temporal lobe atrophy for prediction of Alzheimer's disease in subjects with mild cognitive impairment. Neurobiology of Aging 2013;34(8):2003‐13. - PubMed
deToledo‐Morell 2004 {published data only}
    1. Toledo‐Morrell L, Goncharova I, Dickerson B, Wilson RS, Bennett DA. From healthy aging to early Alzheimer's disease: in vivo detection of entorhinal cortex atrophy. Annals of the New York Academy of Sciences 2000;911:240‐53. - PubMed
    1. deToledo‐Morrell L, Stoub TR, Bulgakova M, Wilson RS, Bennett DA, Leurgans S, et al. MRI‐derived entorhinal volume is a good predictor of conversion from MCI to AD. Neurobiology of Aging 2004;25:1197–203. - PubMed
Devanand 2007 {published data only}
    1. Devanand DP, Pradhaban G, Liu X, Khandji A, Santi S, Segal S, et al. Hippocampal and entorhinal atrophy in mild cognitive impairment. Prediction of Alzheimer disease. Neurology 2007;68:828–36. - PubMed
Eckerstrom 2008 {published data only}
    1. Eckerström C, Olsson E, Borga M, Ekholm S, Ribbelin S, Rolstad S, et al. Small baseline volume of left hippocampus is associated with subsequent conversion of MCI into dementia: the Göteborg MCI study. Journal of the Neurological Sciences 2008;272:48–59. - PubMed
Eckerstrom 2013 {published data only}
    1. Eckerström C, Olsson E, Bjerke M, Malmgren H, Edman A, Wallin A, et al. A combination of neuropsychological, neuroimaging, and cerebrospinal fluid markers predicts conversion from mild cognitive impairment to dementia. Journal of Alzheimer's Disease 2013;36(3):421‐31. - PubMed
Erten‐Lyons 2006 {published data only}
    1. Erten‐Lyons D, Howieson D, Moore MM, Quinn J, Sexton G, Silbert L, et al. Brain volume loss in MCI predicts dementia. Neurology 2006;66:233–5. - PubMed
Frolich 2017 {published data only}
    1. Frölich L, Peters O, Lewczuk P, Gruber O, Teipel SJ, Gertz HJ, et al. Incremental value of biomarker combinations to predict progression of mild cognitive impairment to Alzheimer's dementia. Alzheimer's Research & Therapy 2017;9(1):84. - PMC - PubMed
Galton 2005 {published data only}
    1. Galton CJ, Erzinçlioglu S, Sahakian BJ, Antoun N, Hodges JR. A comparison of the Addenbrooke’s Cognitive Examination (ACE), conventional neuropsychological assessment, and simple MRI‐based medial temporal lobe evaluation in the early diagnosis of Alzheimer’s disease. Cognitive and Behavioral Neurolology 2005;18:144–50. - PubMed
    1. Galton CJ, Gomez‐Anson B, Antoun N, Scheltens P, Patterson K, Graves M, et al. Temporal lobe rating scale: application to Alzheimer’s disease and frontotemporal dementia. Journal of Neurology, Neurosurgery, and Psychiatry 2001;70:165–73. - PMC - PubMed
Gaser 2013 {published data only}
    1. Gaser C, Franke K, Klöppel S, Koutsouleris N, Sauer H. BrainAGE in mild cognitive impaired patients: predicting the conversion to Alzheimer's disease. PLoS One 2013;8(6):e67346. - PMC - PubMed
Herukka 2008 {published data only}
    1. Herukka SK, Pennanen C, Soininen H, Pirttila T. CSF Aβ42, tau and phosphorylated tau correlate with medial temporal lobe atrophy. Journal of Alzheimer’s Disease 2008;14(1):51–7. - PubMed
    1. Pennanen C, Kivipelto M, Tuomainen S, Hartikainen P, Hanninen T, Laakso MP, et al. Hippocampus and entorhinal cortex in mild cognitive impairment and early AD. Neurobiology of Aging 2004;25:303–10. - PubMed
Jack 2000 {published data only}
    1. Jack CR Jr, Petersen RC, Xu Y, O'Brien PC, Smith GE, Ivnik RJ, et al. Rates of hippocampal atrophy correlate with change in clinical status in aging and AD. Neurology 2000;55(4):484–9. - PMC - PubMed
Jang 2018 {published data only}
    1. Jang JW, Park JH, Kim S, Park YH, Pyun JM, Lim JS, et al. Alzheimer’s Disease Neuroimaging Initiative. A 'comprehensive visual rating scale' for predicting progression to dementia in patients with mild cognitive impairment. PLoS One 2018;13(8):e0201852. - PMC - PubMed
Khan 2015 {published data only}
    1. Khan W, Westman E, Jones N, Wahlund LO, Mecocci P, Vellas B, et al. AddNeuroMed consortium for the Alzheimer’s Disease Neuroimaging Initiative. Automated hippocampal subfield measures as predictors of conversion from mild cognitive impairment to Alzheimer's disease in two independent cohorts. Brain Topography 2015;28(5):746‐59. - PMC - PubMed
Ledig 2018 {published data only}
    1. Ledig C, Schuh A, Guerrero R, Heckemann RA, Rueckert D. Structural brain imaging in Alzheimer's disease and mild cognitive impairment: biomarker analysis and shared morphometry database. Scientific Reports 2018;8(1):11258. - PMC - PubMed
Liu 2010 {published data only}
    1. Liu Y, Paajanen T, Zhang Y, Westman E, Wahlund LO, Simmons A, et al. AddNeuroMed Consortium. Analysis of regional MRI volumes and thickness as predictors of conversion from mild cognitive impairment to Alzheimer's disease. Neurobiology of Aging 2010;31(8):1375‐85. - PubMed
Monge Argilés 2014 {published data only}
    1. Monge Argilés JA, Blanco Cantó MA, Leiva Salinas C, Flors L, Muñoz Ruiz C, Sánchez Payá J, et al. A comparison of early diagnostic utility of Alzheimer disease biomarkers in brain magnetic resonance and cerebrospinal fluid. Neurologia 2014;29(7):397‐401. - PubMed
Nesteruk 2016 {published data only}
    1. Nesteruk M, Nesteruk T, Styczyńska M, Barczak A, Mandecka M, Walecki J, et al. Predicting the conversion of mild cognitive impairment to Alzheimer's disease based on the volumetric measurements of the selected brain structures in magnetic resonance imaging. Neurologia i Neurochirurgia Polska 2015;49(6):349‐53. - PubMed
    1. Nesteruk M, Nesteruk T, Styczyńska M, Mandecka M, Barczak A, Barcikowska M. Combined use of biochemical and volumetric biomarkers to assess the risk of conversion of mild cognitive impairment to Alzheimer's disease. Folia Neuropathologica 2016;54(4):369‐74. - PubMed
Ong 2015 {published data only}
    1. Ong KT, Villemagne VL, Bahar‐Fuchs A, Lamb F, Langdon N, Catafau AM, et al. Aβ imaging with 18F‐florbetaben in prodromal Alzheimer's disease: a prospective outcome study. Journal of Neurology, Neurosurgery, and Psychiatry 2015;86(4):431‐6. - PubMed
Pereira 2014 {published data only}
    1. Pereira JB, Cavallin L, Spulber G, Aguilar C, Mecocci P, Vellas B, et al. AddNeuroMed consortium and for the Alzheimer's Disease Neuroimaging Initiative. Influence of age, disease onset and ApoE4 on visual medial temporal lobe atrophy cut‐offs. Journal of Internal Medicine 2014;275(3):317‐30. - PubMed
Platero 2019 {published data only}
    1. Platero C, López ME, Carmen Tobar MD, Yus M, Maestu F. Discriminating Alzheimer's disease progression using a new hippocampal marker from T1‐weighted MRI: the local surface roughness. Human Brain Mapping 2019;40(5):1666‐76. - PMC - PubMed
Prestia 2013 {published data only}
    1. Prestia A, Caroli A, Flier WM, Ossenkoppele R, Berckel B, Barkhof F, et al. Prediction of dementia in MCI patients based on core diagnostic markers for Alzheimer disease. Neurology 2013;80(11):1048‐56. - PubMed
Prestia 2013 (ADNI) {published data only}
    1. Prestia A, Caroli A, Herholz K, Reiman E, Chen K, Jagust WJ, et al. Diagnostic accuracy of markers for prodromal Alzheimer's disease in independent clinical series. Alzheimer's and Dementia 2013;9(6):677‐86. - PMC - PubMed
Prieto del Val 2016 {published data only}
    1. Prieto Del Val L, Cantero JL, Atienza M. Atrophy of amygdala and abnormal memory‐related alpha oscillations over posterior cingulate predict conversion to Alzheimer's disease. Scientific Reports 2016;6:31859. - PMC - PubMed
Rhodius‐Meester 2016 {published data only}
    1. Rhodius‐Meester HF, Koikkalainen J, Mattila J, Teunissen CE, Barkhof F, Lemstra AW, et al. Integrating biomarkers for underlying Alzheimer's disease in mild cognitive impairment in daily practice: comparison of a clinical decision support system with individual biomarkers. Journal of Alzheimer's Disease 2016;50(1):261‐70. - PubMed
VanderFlier 2005 {published data only}
    1. Flier WM, Vlies AE, Weverling‐Rijnsburger AW, Boer NL, Admiraal‐Behloul F, Bollen EL, et al. MRI measures and progression of cognitive decline in non demented elderly attending a memory clinic. International Journal of Geriatric Psychiatry 2005;20(11):1060‐6. [PUBMED: 16250078] - PubMed
Visser 1999 {published data only}
    1. Visser PJ, Scheltens P, Verhey FR, Schmand B, Launer LJ, Jolles J, et al. Medial temporal lobe atrophy and memory dysfunction as predictors for dementia in subjects with mild cognitive impairment. Journal of Neurology 1999;246(6):477‐85. [PUBMED: 10431775] - PubMed
Visser 2002 {published data only}
    1. Visser PJ, Verhey FR, Hofman PA, Scheltens P, Jolles J. Medial temporal lobe atrophy predicts Alzheimer's disease in patients with minor cognitive impairment. Journal of Neurology, Neurosurgery, and Psychiatry 2002;72(4):491‐7. [PUBMED: 11909909] - PMC - PubMed
Wang 2006 {published data only}
    1. Wang L, Miller JP, Gado MH, McKeel DW, Rothermich M, Miller MI, et al. Abnormalities of hippocampal surface structure in very mild dementia of the Alzheimer type. NeuroImage 2006;30(1):52‐60. [PUBMED: 16243546] - PMC - PubMed
Westman 2011 {published data only}
    1. Westman E, Cavallin L, Muehlboeck JS, Zhang Y, Mecocci P, Vellas B, et al. Sensitivity and specificity of medial temporal lobe visual ratings and multivariate regional MRI classification in Alzheimer's disease. PloS One 2011;6(7):e22506. - PMC - PubMed
Wolz 2011 {published data only}
    1. Wolz R, Julkunen V, Koikkalainen J, Niskanen E, Zhang DP, Rueckert D, et al. Multi‐method analysis of MRI images in early diagnostics of Alzheimer's disease. PloS One 2011;6(10):e25446. - PMC - PubMed
Wood 2016 {published data only}
    1. Wood RA, Moodley KK, Lever C, Minati L, Chan D. Allocentric spatial memory testing predicts conversion from mild cognitive impairment to dementia: an initial proof‐of‐concept study. Frontiers in Neurology 2016;7:215. - PMC - PubMed

References to studies excluded from this review

Aguilar 2014 {published data only}
    1. Aguilar C, Muehlboeck JS, Mecocci P, Vellas B, Tsolaki M, Kloszewska I, et al. AddNeuroMed Consortium. Application of a MRI based index to longitudinal atrophy change in Alzheimer disease, mild cognitive impairment and healthy older individuals in the AddNeuroMed cohort. Frontiers in Aging Neuroscience 2014;6:145. - PMC - PubMed
Aksu 2011 {published data only}
    1. Aksu Y, Miller DJ, Kesidis G, Bigler DC, Yang QX. An MRI‐derived definition of MCI‐to‐AD conversion for long‐term, automatic prognosis of MCI patients. PloS One 2011;6(10):e25074. - PMC - PubMed
Apostolova 2006 {published data only}
    1. Apostolova LG, Dutton RA, Dinov ID, Hayashi KM, Toga AW, Cummings JL, et al. Conversion of mild cognitive impairment to Alzheimer disease predicted by hippocampal atrophy maps. Archives of Neurology 2006;63(5):693‐9. [PUBMED: 16682538] - PubMed
Apostolova 2014 {published data only}
    1. Apostolova LG, Hwang KS, Kohannim O, Avila D, Elashoff D, Jack CR Jr, et al. Alzheimer's Disease Neuroimaging Initiative. ApoE4 effects on automated diagnostic classifiers for mild cognitive impairment and Alzheimer's disease. Neuroimage: Clinical 2014;4:461‐72. - PMC - PubMed
Archer 2010 {published data only}
    1. Archer HA, Kennedy J, Barnes J, Pepple T, Boyes R, Randlesome K, et al. Memory complaints and increased rates of brain atrophy: risk factors for mild cognitive impairment and Alzheimer's disease. International Journal of Geriatric Psychiatry 2010;25(11):1119‐26. [PUBMED: 20084620] - PubMed
Ardekani 2017 {published data only}
    1. Ardekani BA, Bermudez E, Mubeen AM, Bachman AH, Alzheimer’s Disease Neuroimaging Initiative. Prediction of incipient Alzheimer's disease dementia in patients with mild cognitive impairment. Journal of Alzheimer's Disease 2017;55(1):269‐81. - PubMed
Bakkour 2009 {published data only}
    1. Bakkour A, Morris JC, Dickerson BC. The cortical signature of prodromal AD: regional thinning predicts mild AD dementia. Neurology 2009;72(12):1048‐55. [PUBMED: 19109536] - PMC - PubMed
Barnes 2014 {published data only}
    1. Barnes DE, Cenzer IS, Yaffe K, Ritchie CS, Lee SJ, Alzheimer's Disease Neuroimaging Initiative. A point‐based tool to predict conversion from mild cognitive impairment to probable Alzheimer's disease. Alzheimer's & Dementia 2014;10(6):646‐55. - PMC - PubMed
Beheshti 2016 {published data only}
    1. Beheshti I, Demirel H, Farokhian F, Yang C, Matsuda H, Alzheimer's Disease Neuroimaging Initiative. Structural MRI‐based detection of Alzheimer's disease using feature ranking and classification error. Computer Methods and Programs in Biomedicine 2016;137:177‐93. - PubMed
Beheshti 2017 {published data only}
    1. Beheshti I, Demirel H, Matsuda H, Alzheimer's Disease Neuroimaging Initiative. Classification of Alzheimer's disease and prediction of mild cognitive impairment‐to‐Alzheimer's conversion from structural magnetic resource imaging using feature ranking and a genetic algorithm. Computers in Biology and Medicine 2017;83:109‐19. - PubMed
Bell‐McGinty 2005 {published data only}
    1. Bell‐McGinty S, Lopez OL, Meltzer CC, Scanlon JM, Whyte EM, Dekosky ST, et al. Differential cortical atrophy in subgroups of mild cognitive impairment. Archives of Neurology 2005;62(9):1393‐7. [PUBMED: 16157746] - PubMed
Bernard 2014 {published data only}
    1. Bernard C, Helmer C, Dilharreguy B, Amieva H, Auriacombe S, Dartigues JF, et al. Time course of brain volume changes in the preclinical phase of Alzheimer's disease. Alzheimer's & Dementia 2014;10(2):143‐51. - PubMed
Blasko 2008 {published data only}
    1. Blasko I, Jellinger K, Kemmler G, Krampla W, Jungwirth S, Wichart I, et al. Conversion from cognitive health to mild cognitive impairment and Alzheimer's disease: prediction by plasma amyloid beta 42, medial temporal lobe atrophy and homocysteine. Neurobiology of Aging 2008;29(1):1‐11. [PUBMED: 17055615] - PubMed
Bombois 2008 {published data only}
    1. Bombois S, Debette S, Bruandet A, Delbeuck X, Delmaire C, Leys D, et al. Vascular subcortical hyperintensities predict conversion to vascular and mixed dementia in MCI patients. Stroke 2008;39(7):2046‐51. [PUBMED: 18436882] - PubMed
Borgio 2012 {published data only}
    1. Borgio JG, Baldaçara L, Moraes Wdos S, Lacerda AL, Montaño MB, Jackowski AP, et al. Hippocampal volume and CDR‐SB can predict conversion to dementia in MCI patients. Arquivos de Neuro‐Psiquiatria 2012;70(11):839‐42. - PubMed
Boutet 2012 {published data only}
    1. Boutet C, Chupin M, Colliot O, Sarazin M, Mutlu G, Drier A, et al. Alzheimer’s Disease Neuroimaging Initiative. Is radiological evaluation as good as computer‐based volumetry to assess hippocampal atrophy in Alzheimer's disease?. Neuroradiology 2012;54(12):1321‐30. - PubMed
Bouwmann 2007 {published data only}
    1. Bouwman FH, Schoonenboom SN, Flier WM, Elk EJ, Kok A, Barkhof F, et al. CSF biomarkers and medial temporal lobe atrophy predict dementia in mild cognitive impairment. Neurobiology of Aging 2007;28(7):1070‐4. - PubMed
Brickman 2015 {published data only}
    1. Brickman AM, Zahodne LB, Guzman VA, Narkhede A, Meier IB, Griffith EY, et al. Reconsidering harbingers of dementia: progression of parietal lobe white matter hyperintensities predicts Alzheimer's disease incidence. Neurobiology of Aging 2015;36(1):27‐32. - PMC - PubMed
Bron 2014 {published data only}
    1. Bron EE, Steketee RM, Houston GC, Oliver RA, Achterberg HC, Loog M, et al. for the Alzheimer’s Disease Neuroimaging Initiative. Diagnostic classification of arterial spin labeling and structural MRI in presenile early stage dementia. Human Brain Mapping 2014;35(9):4916‐31. - PMC - PubMed
Bron 2015 {published data only}
    1. Bron EE, Smits M, Niessen WJ, Klein S. Feature selection based on the SVM weight vector for classification of dementia. IEEE Journal of Biomedical and Health Informatics 2015;19(5):1617‐26. - PubMed
Brück 2013 {published data only}
    1. Brück A, Virta JR, Koivunen J, Koikkalainen J, Scheinin NM, Helenius H, et al. [11C]PIB, [18F]FDG and MR imaging in patients with mild cognitive impairment. European Journal of Nuclear Medicine and Molecular Imaging 2013;40(10):1567‐72. - PubMed
Brueggen 2015 {published data only}
    1. Brueggen K, Dyrba M, Barkhof F, Hausner L, Filippi M, Nestor PJ, et al. Basal forebrain and hippocampus as predictors of conversion to Alzheimer's disease in patients with mild cognitive impairment ‐ a multicenter DTI and volumetry study. Journal of Alzheimer's Disease 2015;48(1):197‐204. - PubMed
Brys 2009 {published data only}
    1. Brys M, Glodzik L, Mosconi L, Switalski R, Santi S, Pirraglia E, et al. Magnetic resonance imaging improves cerebrospinal fluid biomarkers in the early detection of Alzheimer's disease. Journal of Alzheimer's Disease 2009;16(2):351‐62. [PUBMED: 19221425] - PMC - PubMed
Buckley 2017 {published data only}
    1. Buckley CJ, Inglis F, Cherubini A, Zanette M, Farrar G, Brooks DJ, et al. Performance of [18F] flutemetamol amyloid scanning in a phase III amnestic mild cognitive impairment study: additional influence of other biomarkers in estimating risk of conversion to probable Alzheimers disease. Alzheimer's & Dementia 2017;13(7):P221.
Buckner 2005 {published data only}
    1. Buckner RL, Snyder AZ, Shannon BJ, LaRossa G, Sachs R, Fotenos AF, et al. Molecular, structural, and functional characterization of Alzheimer's disease: evidence for a relationship between default activity, amyloid, and memory. Journal of Neuroscience 2005;25(34):7709‐17. [PUBMED: 16120771] - PMC - PubMed
Callahan 2015 {published data only}
    1. Callahan BL, Ramirez J, Berezuk C, Duchesne S, Black SE, for the Alzheimer’s Disease Neuroimaging Initiative. Predicting Alzheimer's disease development: a comparison of cognitive criteria and associated neuroimaging biomarkers. Alzheimer's Research & Therapy 2015;7(1):68. - PMC - PubMed
Cardenas 2003 {published data only}
    1. Cardenas VA, Du AT, Hardin D, Ezekiel F, Weber P, Jagust WJ, et al. Comparison of methods for measuring longitudinal brain change in cognitive impairment and dementia. Neurobiology of Aging 2003;24(4):537‐44. [PUBMED: 12714110] - PubMed
Carmichael 2013 {published data only}
    1. Carmichael O, McLaren DG, Tommet D, Mungas D, Jones RN, for the Alzheimer's Disease Neuroimaging Initiative. Coevolution of brain structures in amnestic mild cognitive impairment. NeuroImage 2013;66:449‐56. - PMC - PubMed
Caroli 2015 {published data only}
    1. Caroli A, Prestia A, Wade S, Chen K, Ayutyanont N, Landau SM, et al. for the Alzheimer’s Disease Neuroimaging Initiative. Alzheimer disease biomarkers as outcome measures for clinical trials in MCI. Alzheimer Disease and Associated Disorders 2015;29(2):101‐9. - PMC - PubMed
Casanova 2013 {published data only}
    1. Casanova R, Hsu FC, Sink KM, Rapp SR, Williamson JD, Resnick SM, et al. Alzheimer's Disease Neuroimaging Initiative. Alzheimer's disease risk assessment using large‐scale machine learning methods. PloS One 2013;8(11):e77949. - PMC - PubMed
Cespedes 2017 {published data only}
    1. Cespedes MI, Fripp J, McGree JM, Drovandi CC, Mengersen K, Doecke JD. Comparisons of neurodegeneration over time between healthy ageing and Alzheimer's disease cohorts via Bayesian inference. BMJ Open 2017;7(2):e012174. - PMC - PubMed
Cevik 2017 {published data only}
    1. Cevik A, Weber GW, Eyuboglu BM, Oguz KK. Voxel‐MARS: a method for early detection of Alzheimer's disease by classification of structural brain MRI. Annals of Operations Research 2017;258(1):31‐57.
Chan 2016 {published data only}
    1. Chan D, Gallaher LM, Moodley K, Minati L, Burgess N, Hartley T. The 4 Mountains test: a short test of spatial memory with high sensitivity for the diagnosis of pre‐dementia Alzheimer's disease. Journal of Visualized Experiments : JoVE 2016;116:54454. - PMC - PubMed
Chao 2005 {published data only}
    1. Chao LL, Schuff N, Kramer JH, Du AT, Capizzano AA, O'Neill J, et al. Reduced medial temporal lobe N‐acetylaspartate in cognitively impaired but non demented patients. Neurology 2005;64(2):282‐9. [PUBMED: 15668426] - PMC - PubMed
Cheng 2012 {published data only}
    1. Cheng B, Zhang D, Shen D. Domain transfer learning for MCI conversion prediction. Medical Image Computing and Computer‐assisted Intervention : MICCAI ... International Conference on Medical Image Computing and Computer‐Assisted Intervention 2012;15(Pt 1):82‐90. - PMC - PubMed
Cheng 2015a {published data only}
    1. Cheng B, Liu M, Zhang D, Munsell BC, Shen D. Domain transfer learning for MCI conversion prediction. IEEE Transactions on Bio‐medical Engineering 2015;62(7):1805‐17. - PMC - PubMed
Cheng 2015b {published data only}
    1. Cheng B, Liu M, Suk HI, Shen D, Zhang D, Alzheimer’s Disease Neuroimaging Initiative. Multimodal manifold‐regularized transfer learning for MCI conversion prediction. Brain Imaging and Behavior 2015;9(4):913‐26. - PMC - PubMed
Chertkow 2012 {published data only}
    1. Chertkow H, Bergman H, Bocti C, Wolfson C, McKelvey R, Whitehead V. Amnestic mild cognitive impairment in a memory clinic: longitudinal course and predictors of progression (abstract). Alzheimer's & Dementia 2012;8 Suppl 4:482.
Chetelat 2005 {published data only}
    1. Chetelat G, Landeau B, Eustache F, Mezenge F, Viader F, Sayette V, et al. Using voxel‐based morphometry to map the structural changes associated with rapid conversion in MCI: a longitudinal MRI study. NeuroImage 2005;27(4):934‐46. [PUBMED: 15979341] - PubMed
Chincarini 2011 {published data only}
    1. Chincarini A, Bosco P, Calvini P, Gemme G, Esposito M, Olivieri C, et al. Alzheimer's Disease Neuroimaging Initiative. Local MRI analysis approach in the diagnosis of early and prodromal Alzheimer's disease. NeuroImage 2011;58(2):469‐80. - PubMed
Chincarini 2014 {published data only}
    1. Chincarini A, Bosco P, Gemme G, Esposito M, Rei L, Squarcia S, et al. Alzheimer's Disease Neuroimaging Initiative. Automatic temporal lobe atrophy assessment in prodromal AD: data from the DESCRIPA study. Alzheimer's & Dementia 2014;10(4):456‐67. - PubMed
Chincarini 2016 {published data only}
    1. Chincarini A, Sensi F, Rei L, Gemme G, Squarcia S, Longo R, et al. Alzheimer's Disease Neuroimaging Initiative. Integrating longitudinal information in hippocampal volume measurements for the early detection of Alzheimer's disease. NeuroImage 2016;125:834‐47. - PubMed
Cho 2012 {published data only}
    1. Cho Y, Seong JK, Jeong Y, Shin SY, Alzheimer's Disease Neuroimaging Initiative. Individual subject classification for Alzheimer's disease based on incremental learning using a spatial frequency representation of cortical thickness data. NeuroImage 2012;59(3):2217‐30. - PMC - PubMed
Chow 2015 {published data only}
    1. Chow N, Hwang KS, Hurtz S, Green AE, Somme JH, Thompson PM, et al. Alzheimer's Disease Neuroimaging Initiative. Comparing 3T and 1.5T MRI for mapping hippocampal atrophy in the Alzheimer's Disease Neuroimaging Initiative. American Journal of Neuroradiology 2015;36(4):653‐60. - PMC - PubMed
Chu 2012 {published data only}
    1. Chu C, Hsu AL, Chou KH, Bandettini P, Lin C, Alzheimer's Disease Neuroimaging Initiative. Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images. NeuroImage 2012;60(1):59‐70. - PubMed
Chung 2016 {published data only}
    1. Chung JK, Plitman E, Nakajima S, Chakravarty MM, Caravaggio F, Takeuchi H, et al. Depressive symptoms and small hippocampal volume accelerate the progression to dementia from mild cognitive impairment. Journal of Alzheimer's Disease 2016;49(3):743‐54. - PubMed
Chupin 2009 {published data only}
    1. Chupin M, Gérardin E, Cuingnet R, Boutet C, Lemieux L, Lehéricy S, et al. Fully automatic hippocampus segmentation and classification in Alzheimer's disease and mild cognitive impairment applied on data from ADNI. Hippocampus 2009;19(6):579‐87. - PMC - PubMed
Citak‐Er 2017 {published data only}
    1. Citak‐Er F, Goularas D, Ormeci B. A novel convolutional neural network model based on voxel‐based morphometry of imaging data in predicting the prognosis of patients with mild cognitive impairment. Journal of Neurological Sciences 2017;34(1):52‐69.
Clerx 2013b {published data only}
    1. Clerx L, Jacobs HI, Burgmans S, Gronenschild EH, Uylings HB, Echávarri C, et al. Sensitivity of different MRI‐techniques to assess grey matter atrophy patterns in Alzheimer's disease is region‐specific. Current Alzheimer Research 2013;10(9):940‐51. - PubMed
Clerx 2014 {published data only}
    1. Clerx L, Dierckx E, Pol L, Rossum I, Verhey FR, Aalten P, et al. Added value of MRI biomarkers to neuropsychological test performance for prediction of AD in subjects with MCI. Alzheimer's & Dementia 2014;10(4):265.
Convit 2000 {published data only}
    1. Convit A, Asis J, Leon MJ, Tarshish CY, Santi S, Rusinek H. Atrophy of the medial occipitotemporal, inferior, and middle temporal gyri in non‐demented elderly predict decline to Alzheimer's disease. Neurobiology of Aging 2000;21(1):19‐26. [PUBMED: 10794844] - PubMed
Cover 2016 {published data only}
    1. Cover KS, Schijndel RA, Versteeg A, Leung KK, Redolfi A, Manset D, et al. The measurement of hippocampal atrophy rates with MRI for a 3‐year study appears to be at least 3 times more sensitive than a 1‐year study based on back‐to‐back reproducibility. Alzheimer's & Dementia 2016;12 Suppl 7:99–100.
Cui 2011 {published data only}
    1. Cui Y, Liu B, Luo S, Zhen X, Fan M, Liu T, et al. Alzheimer's Disease Neuroimaging Initiative. Identification of conversion from mild cognitive impairment to Alzheimer's disease using multivariate predictors. PloS One 2011;6(7):E21896. - PMC - PubMed
Cuignet 2011 {published data only}
    1. Cuingnet R, Gerardin E, Tessieras J, Auzias G, Lehéricy S, Habert MO, et al. Alzheimer's Disease Neuroimaging Initiative. Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database. NeuroImage 2011;56(2):766‐81. - PubMed
Da 2013 {published data only}
    1. Da X, Toledo JB, Zee J, Wolk DA, Xie SX, Ou Y, et al. Alzheimer's Disease Neuroimaging Initiative. Integration and relative value of biomarkers for prediction of MCI to AD progression: spatial patterns of brain atrophy, cognitive scores, APOE genotype and CSF biomarkers. Neuroimage: Clinical 2013;4:164‐73. - PMC - PubMed
Damian 2013 {published data only}
    1. Damian M, Hausner L, Jekel K, Richter M, Froelich L, Almkvist O, et al. Single‐domain amnestic mild cognitive impairment identified by cluster analysis predicts Alzheimer's disease in the European prospective DESCRIPA study. Dementia and Geriatric Cognitive Disorders 2013;36(1‐2):1‐19. - PubMed
Davatzikos 2011 {published data only}
    1. Davatzikos C, Bhatt P, Shaw LM, Batmanghelich KN, Trojanowski JQ. Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification. Neurobiology of Aging 2011;32(12):2322. e19‐27. - PMC - PubMed
De Leon 1997 {published data only}
    1. Leon MJ, George AE, Golomb J, Tarshish C, Convit A, Kluger A, et al. Frequency of hippocampal formation atrophy in normal aging and Alzheimer's disease. Neurobiology of Aging 1997;18(1):1‐11. - PubMed
de Leon 2006 {published data only}
    1. Leon MJ, DeSanti S, Zinkowski R, Mehta PD, Pratico D, Segal S, et al. Longitudinal CSF and MRI biomarkers improve the diagnosis of mild cognitive impairment. Neurobiology of Aging 2006;27(3):394‐401. - PubMed
de Leon 2007 {published data only}
    1. Leon MJ, Mosconi L, Li J, Santi S, Yao Y, Tsui WH, et al. Longitudinal CSF isoprostane and MRI atrophy in the progression to AD. Journal of Neurology 2007;254(12):1666‐75. - PubMed
Den Heijer 2006 {published data only}
    1. Heijer T, Geerlings MI, Hoebeek FE, Hofman A, Koudstaal PJ, Breteler MM. Use of hippocampal and amygdala volumes on magnetic resonance imaging to predict dementia in cognitively intact elderly people. Archives of General Psychiatry 2006;63(1):57‐62. - PubMed
Desikan 2008 {published data only}
    1. Desikan RS, Fischl B, Cabral HJ, Kemper TL, Guttmann CR, Blacker D, et al. MRI measures of temporoparietal regions show differential rates of atrophy during prodromal AD. Neurology 2008;71(11):819‐25. - PMC - PubMed
Devanand 2008 {published data only}
    1. Devanand DP, Liu X, Tabert MH, Pradhaban G, Cuasay K, Bell K, et al. Combining early markers strongly predicts conversion from mild cognitive impairment to Alzheimer's disease. Biological Psychiatry 2008;64(10):871‐9. - PMC - PubMed
Devanand 2012 {published data only}
    1. Devanand DP, Bansal R, Liu J, Hao X, Pradhaban G, Peterson BS. MRI hippocampal and entorhinal cortex mapping in predicting conversion to Alzheimer's disease. NeuroImage 2012;60(3):1622‐9. - PMC - PubMed
Dickerson 2001 {published data only}
    1. Dickerson BC, Goncharova I, Sullivan MP, Forchetti C, Wilson RS, Bennett DA, et al. MRI‐derived entorhinal and hippocampal atrophy in incipient and very mild Alzheimer's disease. Neurobiology of Aging 2001;22(5):747‐54. - PubMed
Dickerson 2004 {published data only}
    1. Dickerson BC, Salat DH, Bates JF, Atiya M, Killiany RJ, Greve DN, et al. Medial temporal lobe function and structure in mild cognitive impairment. Annals of Neurology 2004;56(1):27‐35. - PMC - PubMed
Dickerson 2013 {published data only}
    1. Dickerson BC, Wolk DA, Alzheimer's Disease Neuroimaging Initiative. Biomarker‐based prediction of progression in MCI: comparison of AD signature and hippocampal volume with spinal fluid amyloid‐β and tau. Frontiers in Aging Neuroscience 2013;5:55. - PMC - PubMed
Douaud 2013 {published data only}
    1. Douaud G, Menke RA, Gass A, Monsch AU, Rao A, Whitcher B, et al. Brain microstructure reveals early abnormalities more than two years prior to clinical progression from mild cognitive impairment to Alzheimer's disease. Journal of Neuroscience 2013;33(5):2147‐55. - PMC - PubMed
Doyle 2014 {published data only}
    1. Doyle OM, Westman E, Marquand AF, Mecocci P, Vellas B, Tsolaki M, et al. Predicting progression of Alzheimer's disease using ordinal regression. PloS One 2014;9(8):e105542. - PMC - PubMed
Duara 2008 {published data only}
    1. Duara R, Loewenstein DA, Potter E, Appel J, Greig MT, Urs R, et al. Medial temporal lobe atrophy on MRI scans and the diagnosis of Alzheimer disease. Neurology 2008;71(24):1986‐92. - PMC - PubMed
Duchesne 2009 {published data only}
    1. Duchesne S, Caroli A, Geroldi C, Collins DL, Frisoni GB. Relating one‐year cognitive change in mild cognitive impairment to baseline MRI features. NeuroImage 2009;47(4):1363‐70. - PubMed
Duchesne 2014 {published data only}
    1. Duchesne S, Valdivia F, Mouiha A, Robitaille N. High‐dimensional medial lobe morphometry: an automated MRI biomarker for the new AD diagnostic criteria. International Journal of Alzheimer's Disease 2014;2014:278096. - PMC - PubMed
Duchesne 2015 {published data only}
    1. Duchesne S, Valdivia F, Mouiha A, Robitaille N, Alzheimer's Disease Neuroimaging Initiative. Single time point high‐dimensional morphometry in Alzheimer's disease: group statistics on longitudinally acquired data. Neurobiology of Aging 2015;36(Supplement 1):11‐22. - PubMed
Dukart 2016 {published data only}
    1. Dukart J, Sambataro F, Bertolino A. Accurate prediction of conversion to Alzheimer's disease using imaging, genetic, and neuropsychological biomarkers. Journal of Alzheimer's Disease 2016;49(4):1143‐59. - PubMed
Dyrba 2015 {published data only}
    1. Dyrba M, Barkhof F, Fellgiebel A, Filippi M, Hausner L, Hauenstein K, et al. EDSD study group. Predicting prodromal Alzheimer's disease in subjects with mild cognitive impairment using machine learning classification of multimodal multicenter diffusion‐tensor and magnetic resonance imaging data. Journal of Neuroimaging 2015;25(5):738‐47. - PubMed
Eckerström 2015 {published data only}
    1. Eckerström C, Olsson E, Klasson N, Berge J, Nordlund A, Bjerke M, et al. Multimodal prediction of dementia with up to 10 years follow up: the Gothenburg MCI study. Journal of Alzheimer's Disease 2015;44(1):205‐14. - PubMed
Egli 2015 {published data only}
    1. Egli SC, Hirni DI, Taylor KI, Berres M, Regeniter A, Gass A, et al. Varying strength of cognitive markers and biomarkers to predict conversion and cognitive decline in an early‐stage‐enriched mild cognitive impairment sample. Journal of Alzheimer's Disease 2015;44(2):625‐33. - PubMed
El Fakhri 2003 {published data only}
    1. Fakhri G, Kijewski MF, Johnson KA, Syrkin G, Killiany RJ, Becker JA, et al. MRI‐guided SPECT perfusion measures and volumetric MRI in prodromal Alzheimer disease. Archives of Neurology 2003;60(8):1066‐72. - PubMed
El Fakhri 2004 {published data only}
    1. Fakhri G, Kijewski MF, Albert MS, Johnson KA, Moore SC. Quantitative SPECT leads to improved performance in discrimination tasks related to prodromal Alzheimer's disease. Journal of Nuclear Medicine 2004;45(12):2026‐31. - PubMed
Ellis 2014 {published data only}
    1. Ellis KA, Szoeke C, Bush AI, Darby D, Graham PL, Lautenschlager NT, et al. AIBL Research Group. Rates of diagnostic transition and cognitive change at 18‐month follow‐up among 1112 participants in the Australian imaging, biomarkers and lifestyle flagship study of ageing (AIBL). International Psychogeriatrics 2014;26(4):543‐54. - PubMed
Eskildsen 2013 {published data only}
    1. Eskildsen SF, Coupé P, García‐Lorenzo D, Fonov V, Pruessner JC, Collins DL, Alzheimer's Disease Neuroimaging Initiative. Prediction of Alzheimer's disease in subjects with mild cognitive impairment from the ADNI cohort using patterns of cortical thinning. NeuroImage 2013;65:511‐21. - PMC - PubMed
Eskildsen 2015 {published data only}
    1. Eskildsen SF, Coupé P, Fonov VS, Pruessner JC, Collins DL, Alzheimer's Disease Neuroimaging Initiative. Structural imaging biomarkers of Alzheimer's disease: predicting disease progression. Neurobiology of Aging 2015;36(Supplement 1):23‐31. - PubMed
Evans 2010 {published data only}
    1. Evans MC, Barnes J, Nielsen C, Kim LG, Clegg SL, Blair M, et al. Volume changes in Alzheimer's disease and mild cognitive impairment: cognitive associations. European Radiology 2010;20(3):674‐82. - PubMed
Ewers 2012   {published data only}
    1. Ewers M, Walsh C, Trojanowski JQ, Shaw LM, Petersen RC, Jack CR Jr, et al. North American Alzheimer's Disease Neuroimaging Initiative (ADNI). Prediction of conversion from mild cognitive impairment to Alzheimer's disease dementia based upon biomarkers and neuropsychological test performance. Neurobiology of Aging 2012;33(7):1203‐14. - PMC - PubMed
Fan 2008 {published data only}
    1. Fan Y, Batmanghelich N, Clark CM, Davatzikos C. Spatial patterns of brain atrophy in MCI patients, identified via high‐dimensional pattern classification, predict subsequent cognitive decline. NeuroImage 2008;39(4):1731‐43. - PMC - PubMed
Fellgiebel 2006 {published data only}
    1. Fellgiebel A, Dellani PR, Greverus D, Scheurich A, Stoeter P, Muller MJ. Predicting conversion to dementia in mild cognitive impairment by volumetric and diffusivity measurements of the hippocampus. Psychiatry Research 2006;146(3):283‐7. - PubMed
Fjell 2010 {published data only}
    1. Fjell AM, Walhovd KB, Fennema‐Notestine C, McEvoy LK, Hagler DJ, Holland D, et al. CSF biomarkers in prediction of cerebral and clinical change in mild cognitive impairment and Alzheimer's disease. Journal of Neuroscience 2010;30(6):2088‐101. - PMC - PubMed
Fleisher 2008 {published data only}
    1. Fleisher AS, Sun S, Taylor C, Ward CP, Gamst AC, Petersen RC, et al. Volumetric MRI vs clinical predictors of Alzheimer disease in mild cognitive impairment. Neurology 2008;70(3):191‐9. - PubMed
Fouquet 2009 {published data only}
    1. Fouquet M, Desgranges B, Landeau B, Duchesnay E, Mezenge F, Sayette V, et al. Longitudinal brain metabolic changes from amnestic mild cognitive impairment to Alzheimer's disease. Brain 2009;132(Pt 8):2058‐67. - PMC - PubMed
Franko 2013 {published data only}
    1. Frankó E, Joly O, Alzheimer’s Disease Neuroimaging Initiative. Evaluating Alzheimer's disease progression using rate of regional hippocampal atrophy. PloS One 2013;8(8):e71345. - PMC - PubMed
Gao 2018 {published data only}
    1. Gao N, Tao LX, Huang J, Zhang F, Li X, O'Sullivan F, et al. Contourlet‐based hippocampal magnetic resonance imaging texture features for multivariant classification and prediction of Alzheimer's disease. Metabolic Brain Disease 2018;33(6):1899‐909. - PubMed
Gavidia 2017 {published data only}
    1. Gavidia‐Bovadilla G, Kanaan‐Izquierdo S, Mataró‐Serrat M, Perera‐Lluna A, Alzheimer’s Disease Neuroimaging Initiative. Early prediction of Alzheimer's disease using null longitudinal model‐based classifiers. PloS One 2017;12(1):e0168011. - PMC - PubMed
Gavrilova 2008 {published data only}
    1. Gavrilova SI, Fedorova YB, Roshchina IF, Korovaitseva GI. Prognosis of mild cognitive impairment syndrome: data from a two‐year clinical follow‐up study. Neuroscience and Behavioral Physiology 2008;38(2):129‐34. - PubMed
Geroldi 2006 {published data only}
    1. Geroldi C, Rossi R, Calvagna C, Testa C, Bresciani L, Binetti G, et al. Medial temporal atrophy but not memory deficit predicts progression to dementia in patients with mild cognitive impairment. Journal of Neurology, Neurosurgery, and Psychiatry 2006;77(11):1219‐22. - PMC - PubMed
Gomar 2011 {published data only}
    1. Gomar JJ, Bobes‐Bascaran MT, Conejero‐Goldberg C, Davies P, Goldberg TE, Alzheimer's Disease Neuroimaging Initiative. Utility of combinations of biomarkers, cognitive markers, and risk factors to predict conversion from mild cognitive impairment to Alzheimer disease in patients in the Alzheimer's disease neuroimaging initiative. Archives of General Psychiatry 2011;68(9):961‐9. - PubMed
Gómez‐Sancho 2018 {published data only}
    1. Gómez‐Sancho M, Tohka J, Gómez‐Verdejo V. Alzheimer's Disease Neuroimaging Initiative. Comparison of feature representations in MRI‐based MCI‐to‐AD conversion prediction. Magnetic Resonance Imaging 2018;50:84‐95. - PubMed
Goryawala 2015 {published data only}
    1. Goryawala M, Zhou Q, Barker W, Loewenstein DA, Duara R, Adjouadi M. Inclusion of neuropsychological scores in atrophy models improves diagnostic classification of Alzheimer's disease and mild cognitive impairment. Computational Intelligence and Neuroscience 2015;2015:865265. - PMC - PubMed
Grothe 2013 {published data only}
    1. Grothe M, Heinsen H, Teipel S. Longitudinal measures of cholinergic forebrain atrophy in the transition from healthy aging to Alzheimer's disease. Neurobiology of Aging 2013;34(4):1210‐20. - PMC - PubMed
Grundman 2002 {published data only}
    1. Grundman M, Sencakova D, Jack CR Jr, Petersen RC, Kim HT, Schultz A, et al. Brain MRI hippocampal volume and prediction of clinical status in a mild cognitive impairment trial. Journal of Molecular Neuroscience 2002;19(1‐2):23‐7. - PubMed
Guo 2017 {published data only}
    1. Guo S, Lai C, Wu C, Cen G, Alzheimer's Disease Neuroimaging Initiative. Corrigendum: conversion discriminative analysis on mild cognitive impairment using multiple cortical features from MR images. Frontiers in Aging Neuroscience 2017;9:293. - PMC - PubMed
Guzman 2013 {published data only}
    1. Guzman VA, Carmichael OT, Schwarz C, Tosto G, Zimmerman ME, Brickman AM, Alzheimer's Disease Neuroimaging Initiative. White matter hyperintensities and amyloid are independently associated with entorhinal cortex volume among individuals with mild cognitive impairment. Alzheimer's & Dementia 2013;9 Suppl 5:124‐31. - PMC - PubMed
Hall 2015 {published data only}
    1. Hall A, Muñoz‐Ruiz M, Mattila J, Koikkalainen J, Tsolaki M, Mecocci P, et al. Alzheimer Disease Neuroimaging Initiative, AddNeuroMed consortium, DESCRIPA, Kuopio L‐MCI. Generalizability of the disease state index prediction model for identifying patients progressing from mild cognitive impairment to Alzheimer's disease. Journal of Alzheimer's Disease 2015;44(1):79‐92. - PubMed
Hall 2015b {published data only}
    1. Hall A, Mattila J, Koikkalainen J, Lötjonen J, Wolz R, Scheltens P, et al. Predicting progression from cognitive impairment to Alzheimer's disease with the Disease State Index. Current Alzheimer Research 2015;12(1):69‐79. - PubMed
Hamalainen 2007 {published data only}
    1. Hamalainen A, Tervo S, Grau‐Olivares M, Niskanen E, Pennanen C, Huuskonen J, et al. Voxel‐based morphometry to detect brain atrophy in progressive mild cognitive impairment. NeuroImage 2007;37(4):1122‐31. - PubMed
Hamalainen 2008 {published data only}
    1. Hamalainen A, Grau‐Olivares M, Tervo S, Niskanen E, Pennanen C, Huuskonen J, et al. Apolipoprotein E epsilon 4 allele is associated with increased atrophy in progressive mild cognitive impairment: a voxel‐based morphometric study. Neuro‐degenerative Diseases 2008;5(3‐4):186‐9. - PubMed
Heister 2011 {published data only}
    1. Heister D, Brewer JB, Magda S, Blennow K, McEvoy LK, Alzheimer's Disease Neuroimaging Initiative. Predicting MCI outcome with clinically available MRI and CSF biomarkers. Neurology 2011;77(17):1619‐28. - PMC - PubMed
Henneman 2009 {published data only}
    1. Henneman WJ, Vrenken H, Barnes J, Sluimer IC, Verwey NA, Blankenstein MA, et al. Baseline CSF p‐tau levels independently predict progression of hippocampal atrophy in Alzheimer disease. Neurology 2009;73(12):935‐40. - PMC - PubMed
Henry‐Feugeas 2008 {published data only}
    1. Henry‐Feugeas MC, Onen F, Claeys ES. Classifying late‐onset dementia with MRI: is arteriosclerotic brain degeneration the most common cause of Alzheimer's syndrome?. Clinical Interventions in Aging 2008;3(1):187‐99. - PMC - PubMed
Hensel 2005 {published data only}
    1. Hensel A, Wolf H, Busse A, Arendt T, Gertz HJ. Association between global brain volume and the rate of cognitive change in elderly humans without dementia. Dementia and Geriatric Cognitive Disorders 2005;19(4):213‐21. - PubMed
Hinrichs 2011 {published data only}
    1. Hinrichs C, Singh V, Xu G, Johnson SC, Alzheimers Disease Neuroimaging Initiative. Predictive markers for AD in a multi‐modality framework: an analysis of MCI progression in the ADNI population. NeuroImage 2011;55(2):574‐89. - PMC - PubMed
Hu 2016 {published data only}
    1. Hu K, Wang Y, Chen K, Hou L, Zhang X. Multi‐scale features extraction from baseline structure MRI for MCI patient classification and AD early diagnosis. Neurocomputing 2016;175(Part A):132‐45.
Huang 2017 {published data only}
    1. Huang M, Yang W, Feng Q, Chen W, Alzheimer’s Disease Neuroimaging Initiative. Longitudinal measurement and hierarchical classification framework for the prediction of Alzheimer's disease. Scientific Reports 2017;7:39880. - PMC - PubMed
Inui 2017 {published data only}
    1. Inui Y, Ito K, Kato T, SEAD‐J Study Group. Longer‐term investigation of the value of 18F‐FDG‐PET and magnetic resonance imaging for predicting the conversion of mild cognitive impairment to Alzheimer's disease: a multicenter study. Journal of Alzheimer's Disease 2017;60(3):877‐87. - PMC - PubMed
Jack 2004 {published data only}
    1. Jack CR Jr, Shiung MM, Gunter JL, O'Brien PC, Weigand SD, Knopman DS, et al. Comparison of different MRI brain atrophy rate measures with clinical disease progression in AD. Neurology 2004;62(4):591‐600. - PMC - PubMed
Jack 2005 {published data only}
    1. Jack CR Jr, Shiung MM, Weigand SD, O'Brien PC, Gunter JL, Boeve BF, et al. Brain atrophy rates predict subsequent clinical conversion in normal elderly and amnestic MCI. Neurology 2005;65(8):1227‐31. - PMC - PubMed
Jack 2008a {published data only}
    1. Jack CR Jr, Weigand SD, Shiung MM, Przybelski SA, O'Brien PC, Gunter JL, et al. Atrophy rates accelerate in amnestic mild cognitive impairment. Neurology 2008;70(19 Pt 2):1740‐52. - PMC - PubMed
Jack 2009 {published data only}
    1. Jack CR Jr, Lowe VJ, Weigand SD, Wiste HJ, Senjem ML, Knopman DS, et al. Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer's disease: implications for sequence of pathological events in Alzheimer's disease. Brain 2009;132(Pt 5):1355‐65. - PMC - PubMed
Jacobs 2011 {published data only}
    1. Jacobs HI, Boxtel MP, Elst W, Burgmans S, Smeets F, Gronenschild EH, et al. Increasing the diagnostic accuracy of medial temporal lobe atrophy in Alzheimer's disease. Journal of Alzheimer's Disease 2011;25(3):477‐90. - PubMed
Jie 2013 {published data only}
    1. Jie B, Zhang D, Cheng B, Shen D. Manifold regularized multi‐task feature selection for multi‐modality classification in Alzheimer's disease. Medical Image Computing and Computer‐assisted Intervention : MICCAI ... International Conference on Medical Image Computing and Computer‐Assisted Intervention 2013;16(Pt 1):275‐83. - PMC - PubMed
Kalin 2017 {published data only}
    1. Kälin AM, Park MT, Chakravarty MM, Lerch JP, Michels L, Schroeder C, et al. Subcortical shape changes, hippocampal atrophy and cortical thinning in future Alzheimer's disease patients. Frontiers in Aging Neuroscience 2017;9:38. - PMC - PubMed
Kaneko 2005 {published data only}
    1. Kaneko KT, Momose M, Kadoya M. Neuroimaging tools to rate cognitive impairment. Psychogeriatrics 2005;5(3):89.
Kantarci 2005 {published data only}
    1. Kantarci K, Petersen RC, Boeve BF, Knopman DS, Weigand SD, O'Brien PC, et al. DWI predicts future progression to Alzheimer disease in amnestic mild cognitive impairment. Neurology 2005;64(5):902‐4. [PUBMED: 15753434] - PMC - PubMed
Kantarci 2009 {published data only}
    1. Kantarci K, Weigand SD, Przybelski SA, Shiung MM, Whitwell JL, Negash S, et al. Risk of dementia in MCI: combined effect of cerebrovascular disease, volumetric MRI, and 1H MRS. Neurology 2009;72(17):1519‐25. [PUBMED: 19398707] - PMC - PubMed
Karas 2008 {published data only}
    1. Karas G, Sluimer J, Goekoop R, Flier W, Rombouts SA, Vrenken H, et al. Amnestic mild cognitive impairment: structural MR imaging findings predictive of conversion to Alzheimer disease. AJNR. American Journal of Neuroradiology 2008;29(5):944‐9. [PUBMED: 18296551] - PMC - PubMed
Kaye 1997 {published data only}
    1. Kaye JA, Swihart T, Howieson D, Dame A, Moore MM, Karnos T, et al. Volume loss of the hippocampus and temporal lobe in healthy elderly persons destined to develop dementia. Neurology 1997;48(5):1297‐304. [PUBMED: 9153461] - PubMed
Kaye 2005 {published data only}
    1. Kaye JA, Moore MM, Dame A, Quinn J, Camicioli R, Howieson D, et al. Asynchronous regional brain volume losses in presymptomatic to moderate AD. Journal of Alzheimer's Disease 2005;8(1):51‐6. [PUBMED: 16155349] - PubMed
Khan 2015b {published data only}
    1. Khan W, Aguilar C, Kiddle SJ, Doyle O, Thambisetty M, Muehlboeck S, et al. Alzheimer’s Disease Neuroimaging Initiative. A subset of cerebrospinal fluid proteins from a multi‐analyte panel associated with brain atrophy, disease classification and prediction in Alzheimer's disease. PloS One 2015;10(8):e0134368. - PMC - PubMed
Killiany 2000 {published data only}
    1. Killiany RJ, Gomez‐Isla T, Moss M, Kikinis R, Sandor T, Jolesz F, et al. Use of structural magnetic resonance imaging to predict who will get Alzheimer's disease. Annals of Neurology 2000;47(4):430‐9. [PUBMED: 10762153] - PubMed
Kim 2017 {published data only}
    1. Kim HR, Park YH, Jang JW, Park SY, Wang MJ, Baek MJ, et al. Visual rating of posterior atrophy as a marker of progression to dementia in mild cognitive impairment patients. Journal of Alzheimer's Disease 2017;55(1):137‐46. - PubMed
Kloppel 2015 {published data only}
    1. Klöppel S, Peter J, Ludl A, Pilatus A, Maier S, Mader I, et al. Alzheimer’s Disease Neuroimaging Initiative. Applying automated MR‐based diagnostic methods to the memory clinic: a prospective study. Journal of Alzheimer's Disease 2015;47(4):939‐54. - PMC - PubMed
Kong 2014 {published data only}
    1. Kong D, Giovanello KS, Wang Y, Lee E, Ibrahim JG, Lin W, et al. Role of imaging and genetic data for predicting time to conversion to Azheimer disease in patients with mild cognitive impairment. Annals of Neurology 2014;76 Suppl 18:S94.
Korf 2004 {published data only}
    1. Korf ES, Wahlund LO, Visser PJ, Scheltens P. Medial temporal lobe atrophy on MRI predicts dementia in patients with mild cognitive impairment. Neurology 2004;63(1):94‐100. [PUBMED: 15249617] - PubMed
Korolev 2016 {published data only}
    1. Korolev IO, Symonds LL, Bozoki AC, Alzheimer's Disease Neuroimaging Initiative. Predicting progression from mild cognitive impairment to Alzheimer's dementia using clinical, MRI, and plasma biomarkers via probabilistic pattern classification. PloS One 2016;11(2):e0138866. - PMC - PubMed
Kovacevic 2009 {published data only}
    1. Kovacevic S, Rafii MS, Brewer JB. High‐throughput, fully automated volumetry for prediction of MMSE and CDR decline in mild cognitive impairment. Alzheimer Disease and Associated Disorders 2009;23(2):139‐45. [PUBMED: 19474571] - PMC - PubMed
Krashenyi 2016 {published data only}
    1. Krashenyi I, Ramírez J, Popov A, Górriz JM, The Alzheimer's Disease Neuroimaging Initiative. Fuzzy computer‐aided Alzheimer's disease diagnosis based on MRI data. Current Alzheimer Research 2016;13(5):545‐56. - PubMed
Laforce 2010 {published data only}
    1. Laforce R Jr, Buteau JP, Paquet N, Verret L, Houde M, Bouchard RW. The value of PET in mild cognitive impairment, typical and atypical/unclear dementias: a retrospective memory clinic study. American Journal of Alzheimer's Disease and Other Dementias 2010;25(4):324‐32. [PUBMED: 20539026] - PMC - PubMed
Lan 2017 {published data only}
    1. Lan MJ, Ogden RT, Kumar D, Stern Y, Parsey RV, Pelton GH, et al. Utility of molecular and structural brain imaging to predict progression from mild cognitive impairment to dementia. Journal of Alzheimer's Disease 2017;60(3):939‐47. - PMC - PubMed
Landau 2010 {published data only}
    1. Landau SM, Harvey D, Madison CM, Reiman EM, Foster NL, Aisen PS, et al. Alzheimer's Disease Neuroimaging Initiative. Comparing predictors of conversion and decline in mild cognitive impairment. Neurology 2010;75(3):230‐8. - PMC - PubMed
Lebedev, 2014 {published data only}
    1. Lebedev AV, Westman E, Westen GJ, Kramberger MG, Lundervold A, Aarsland D, et al. Alzheimer's Disease Neuroimaging Initiative and the AddNeuroMed consortium. Random Forest ensembles for detection and prediction of Alzheimer's disease with a good between‐cohort robustness. Neuroimage: Clinical 2014;6:115‐25. - PMC - PubMed
Lee 2015 {published data only}
    1. Lee E, Zhu H, Kong D, Wang Y, Giovanello KS, Ibrahim JG. BFLCRM: a bayesian functional linear Cox regression model for predicting time to conversion to Alzheimer's disease. Annals of Applied Statistics 2015;9(4):2153‐78. - PMC - PubMed
Lehman 2013 {published data only}
    1. Lehmann M, Koedam EL, Barnes J, Bartlett JW, Barkhof F, Wattjes MP, et al. Alzheimer's Disease Neuroimaging Initiative. Visual ratings of atrophy in MCI: prediction of conversion and relationship with CSF biomarkers. Neurobiology of Aging 2013;34(1):73‐82. - PubMed
Leung 2010 {published data only}
    1. Leung KK, Barnes J, Ridgway GR, Bartlett JW, Clarkson MJ, Macdonald K, et al. Automated cross‐sectional and longitudinal hippocampal volume measurement in mild cognitive impairment and Alzheimer's disease. NeuroImage 2010;51(4):1345‐59. [PUBMED: 20230901] - PMC - PubMed
Leung 2013 {published data only}
    1. Leung KK, Bartlett JW, Barnes J, Manning EN, Ourselin S, Fox NC, Alzheimer's Disease Neuroimaging Initiative. Cerebral atrophy in mild cognitive impairment and Alzheimer disease: rates and acceleration. Neurology 2013;80(7):648‐54. - PMC - PubMed
Li 2012 {published data only}
    1. Li X, Jiao J, Shimizu S, Jibiki I, Watanabe K, Kubota T. Correlations between atrophy of the entorhinal cortex and cognitive function in patients with Alzheimer's disease and mild cognitive impairment. Psychiatry and Clinical Neurosciences 2012;66(7):587‐93. - PubMed
Li 2014a {published data only}
    1. Li H, Liu Y, Gong P, Zhang C, Ye J, Alzheimers Disease Neuroimaging Initiative. Hierarchical interactions model for predicting mild cognitive impairment (MCI) to Alzheimer's disease (AD) conversion. PloS One 2014;9(1):e82450. - PMC - PubMed
Li 2014b {published data only}
    1. Li M, Oishi K, He X, Qin Y, Gao F, Mori S, Alzheimer's Disease Neuroimaging Initiative. An efficient approach for differentiating Alzheimer's disease from normal elderly based on multicenter MRI using gray‐level invariant features. PloS One 2014;9(8):e105563. - PMC - PubMed
Lillemark 2014 {published data only}
    1. Lillemark L, Sørensen L, Pai A, Dam EB, Nielsen M, Alzheimer's Disease Neuroimaging Initiative. Brain region's relative proximity as marker for Alzheimer's disease based on structural MRI. BMC Medical Imaging 2014;14:21. - PMC - PubMed
Lin 2018 {published data only}
    1. Lin W, Tong T, Gao Q, Guo D, Du X, Yang Y, et al. Alzheimer’s Disease Neuroimaging Initiative. Convolutional neural networks‐based MRI image analysis for the Alzheimer's disease prediction from mild cognitive impairment. Frontiers in Neuroscience 2018;12:777. - PMC - PubMed
Lindemer 2015 {published data only}
    1. Lindemer ER, Salat DH, Smith EE, Nguyen K, Fischl B, Greve DN, Alzheimer's Disease Neuroimaging Initiative. White matter signal abnormality quality differentiates mild cognitive impairment that converts to Alzheimer's disease from non converters. Neurobiology of Aging 2015;36(9):2447‐57. - PMC - PubMed
Liu 2013   {published data only}
    1. Liu Y, Mattila J, Ruiz MÁ, Paajanen T, Koikkalainen J, Gils M, et al. Alzheimer's Disease Neuroimaging Initiative. Predicting AD conversion: comparison between prodromal AD guidelines and computer assisted PredictAD tool. PloS One 2013;8(2):e55246. - PMC - PubMed
Liu 2014a {published data only}
    1. Liu F, Wee CY, Chen H, Shen D. Inter‐modality relationship constrained multi‐modality multi‐task feature selection for Alzheimer's disease and mild cognitive impairment identification. NeuroImage 2014;84:466‐75. - PMC - PubMed
Liu 2014b {published data only}
    1. Liu M, Zhang D, Shen D, Alzheimer’s Disease Neuroimaging Initiative. Identifying informative imaging biomarkers via tree structured sparse learning for AD diagnosis. Neuroinformatics 2014;12(3):381‐94. - PMC - PubMed
Llano 2011 {published data only}
    1. Llano DA, Laforet G, Devanarayan V, Alzheimer’s Disease Neuroimaging Initiative. Derivation of a new ADAS‐cog composite using tree‐based multivariate analysis: prediction of conversion from mild cognitive impairment to Alzheimer disease. Alzheimer Disease and Associated Disorders 2011;25(1):73‐84. - PubMed
Long 2016 {published data only}
    1. Long Z, Jing B, Yan H, Dong J, Liu H, Mo X, et al. A support vector machine‐based method to identify mild cognitive impairment with multi‐level characteristics of magnetic resonance imaging. Neuroscience 2016;331:169‐76. - PubMed
Lopez 2016 {published data only}
    1. López ME, Turrero A, Cuesta P, López‐Sanz D, Bruña R, Marcos A, et al. Searching for primary predictors of conversion from mild cognitive impairment to Alzheimer's disease: a multivariate follow‐up study. Journal of Alzheimer's Disease 2016;52(1):133‐43. - PubMed
Luo 2016 {published data only}
    1. Luo Y, Cao Z, Liu Y, Wu L, Shan H, Liu Y, et al. T2 signal intensity and volume abnormalities of hippocampal subregions in patients with amnestic mild cognitive impairment by magnetic resonance imaging. International Journal of Neuroscience 2016;126(10):904‐11. - PubMed
Ma 2016 {published data only}
    1. Ma X, Li Z, Jing B, Liu H, Li D, Li H, Alzheimer’s Disease Neuroimaging Initiative. Identify the atrophy of Alzheimer's disease, mild cognitive impairment and normal aging using morphometric MRI analysis. Frontiers in Aging Neuroscience 2016;8:243. - PMC - PubMed
MacDonald 2013 {published data only}
    1. Macdonald KE, Bartlett JW, Leung KK, Ourselin S, Barnes J, ADNI investigators. The value of hippocampal and temporal horn volumes and rates of change in predicting future conversion to AD. Alzheimer Disease and Associated Disorders 2013;27(2):168‐73. - PMC - PubMed
Mah 2015 {published data only}
    1. Mah L, Binns MA, Steffens DC, Alzheimer's Disease Neuroimaging Initiative. Anxiety symptoms in amnestic mild cognitive impairment are associated with medial temporal atrophy and predict conversion to Alzheimer disease. American Journal of Geriatric Psychiatry 2015;23(5):466‐76. - PMC - PubMed
Mangialasche 2013 {published data only}
    1. Mangialasche F, Westman E, Kivipelto M, Muehlboeck JS, Cecchetti R, Baglioni M, et al. AddNeuroMed consortium. Classification and prediction of clinical diagnosis of Alzheimer's disease based on MRI and plasma measures of α‐/γ‐tocotrienols and γ‐tocopherol. Journal of Internal Medicine 2013;273(6):602‐21. - PubMed
Manning 2014 {published data only}
    1. Manning EN, Barnes J, Cash DM, Bartlett JW, Leung KK, Ourselin S, et al. Alzheimer's Disease NeuroImaging Initiative. APOE ϵ4 is associated with disproportionate progressive hippocampal atrophy in AD. PloS One 2014;9(5):e97608. - PMC - PubMed
Martínez‐Torteya 2015 {published data only}
    1. Martínez‐Torteya A, Treviño V, Tamez‐Peña JG. Improved diagnostic multimodal biomarkers for Alzheimer's disease and mild cognitive impairment. BioMed Research International 2015;2015:961314. - PMC - PubMed
Maruyama 2004 {published data only}
    1. Maruyama M, Matsui T, Tanji H, Nemoto M, Tomita N, Ootsuki M, et al. Cerebrospinal fluid tau protein and periventricular white matter lesions in patients with mild cognitive impairment: implications for 2 major pathways. Archives of Neurology 2004;61(5):716‐20. [PUBMED: 15148149] - PubMed
Mascalchi 2016 {published data only}
    1. Mascalchi M, Bessi V, Ginestroni A, Toschi N, Ciulli S, Padiglioni S, et al. Low MT ratio in hippocampus of amnestic MCI patients who will progress to AD. Journal of Neurology 2016;263(5):1024‐6. - PubMed
Massaro 2004 {published data only}
    1. Massaro JM, D'Agostino RB Sr, Sullivan LM, Beiser A, DeCarli C, Au R, et al. Managing and analysing data from a large‐scale study on Framingham offspring relating brain structure to cognitive function. Statistics in Medicine 2004;23(2):351‐67. [PUBMED: 14716734] - PubMed
McEvoy 2009 {published data only}
    1. McEvoy LK, Fennema‐Notestine C, Roddey JC, Hagler DJ Jr, Holland D, Karow DS, et al. Alzheimer's Disease Neuroimaging Initiative. Alzheimer disease: quantitative structural neuroimaging for detection and prediction of clinical and structural changes in mild cognitive impairment. Radiology 2009;251(1):195‐205. - PMC - PubMed
McEvoy 2011 {published data only}
    1. McEvoy LK, Blennow K, Brewer J, Dale A, Heister D. Predicting progression to Alzheimer's disease in MCI using combined structural atrophy and CSF biomarkers. Alzheimer's & Dementia 2011;7 Suppl 4:3‐4.
Meguro 2016 {published data only}
    1. Meguro K, Akanuma K, Meguro M, Yamaguchi S, Ishii H, Tashiro M. Prevalence and prognosis of prodromal Alzheimer's disease as assessed by magnetic resonance imaging and 18F‐fluorodeoxyglucose‐positron emission tomography in a community: reanalysis from the Osaki‐Tajiri Project. Psychogeriatrics 2016;16(2):116‐20. - PubMed
Meyer 2005a {published data only}
    1. Meyer JS, Huang J, Chowdhury M. MRI abnormalities associated with mild cognitive impairments of vascular (VMCI) versus neurodegenerative (NMCI) types prodromal for vascular and Alzheimer's dementias. Current Alzheimer Research 2005;2(5):579‐85. [PUBMED: 16375661] - PubMed
Meyer 2005b {published data only}
    1. Meyer JS, Quach M, Thornby J, Chowdhury M, Huang J. MRI identifies MCI subtypes: vascular versus neurodegenerative. Journal of the Neurological Sciences 2005;229‐230:121‐9. [PUBMED: 15760630] - PubMed
Meyer 2007 {published data only}
    1. Meyer JS, Huang J, Chowdhury MH. MRI confirms mild cognitive impairments prodromal for Alzheimer's, vascular and Parkinson‐Lewy body dementias. Journal of the Neurological Sciences 2007;257(1‐2):97‐104. [PUBMED: 17316690] - PubMed
Miller 2008 {published data only}
    1. Miller SL, Fenstermacher E, Bates J, Blacker D, Sperling RA, Dickerson BC. Hippocampal activation in adults with mild cognitive impairment predicts subsequent cognitive decline. Journal of Neurology, Neurosurgery, and Psychiatry 2008;79(6):630‐5. [PUBMED: 17846109] - PMC - PubMed
Minhas 2017 {published data only}
    1. Minhas S, Khanum A, Riaz F, Alvi A, Khan SA. A nonparametric approach for mild cognitive impairment to AD conversion prediction: results on longitudinal data. IEEE Journal of Biomedical and Health Informatics 2017;21(5):1403‐10. - PubMed
Moradi 2015 {published data only}
    1. Moradi E, Pepe A, Gaser C, Huttunen H, Tohka J, Alzheimer's Disease Neuroimaging Initiative. Machine learning framework for early MRI‐based Alzheimer's conversion prediction in MCI subjects. NeuroImage 2015;104:398‐412. - PMC - PubMed
Moradi 2016 {published data only}
    1. Moradi E, Hallikainen I, Hänninen T, Tohka J, Alzheimer's Disease Neuroimaging Initiative. Rey's auditory verbal learning test scores can be predicted from whole brain MRI in Alzheimer's disease. Neuroimage: Clinical 2016;13:415‐27. - PMC - PubMed
Moretti 2015 {published data only}
    1. Moretti DV. Understanding early dementia: EEG, MRI, SPECT and memory evaluation. Translational Neuroscience 2015;6(1):32‐46. - PMC - PubMed
Morra 2009 {published data only}
    1. Morra JH, Tu Z, Apostolova LG, Green AE, Avedissian C, Madsen SK, et al. Alzheimer's Disease Neuroimaging Initiative. Automated mapping of hippocampal atrophy in 1‐year repeat MRI data from 490 subjects with Alzheimer's disease, mild cognitive impairment, and elderly controls. NeuroImage 2009;45 Suppl 1:S3‐15. - PMC - PubMed
Mubeen 2017 {published data only}
    1. Mubeen AM, Asaei A, Bachman AH, Sidtis JJ, Ardekani BA, Alzheimer's Disease Neuroimaging Initiative. A six‐month longitudinal evaluation significantly improves accuracy of predicting incipient Alzheimer's disease in mild cognitive impairment. Journal of Neuroradiology. Journal de Neuroradiologie 2017;44(6):381‐7. - PubMed
Mungas 2002 {published data only}
    1. Mungas D, Reed BR, Jagust WJ, DeCarli C, Mack WJ, Kramer JH, et al. Volumetric MRI predicts rate of cognitive decline related to AD and cerebrovascular disease. Neurology 2002;59(6):867‐73. [PUBMED: 12297568] - PMC - PubMed
Mungas 2005 {published data only}
    1. Mungas D, Harvey D, Reed BR, Jagust WJ, DeCarli C, Beckett L, et al. Longitudinal volumetric MRI change and rate of cognitive decline. Neurology 2005;65(4):565‐71. [PUBMED: 16116117] - PMC - PubMed
Nesteruk 2015 {published data only}
    1. Nesteruk M, Nesteruk T, Styczyńska M, Barczak A, Mandecka M, Walecki J, et al. Predicting the conversion of mild cognitive impairment to Alzheimer's disease based on the volumetric measurements of the selected brain structures in magnetic resonance imaging. Neurologia i Neurochirurgia Polska 2015;49(6):349‐53. - PubMed
Nordlund 2005 {published data only}
    1. Nordlund A, Rolstad S, Hellström P, Sjögren M, Hansen S, Wallin A. The Goteborg MCI study: mild cognitive impairment is a heterogeneous condition. Journal of Neurology, Neurosurgery, and Psychiatry 2005;76(11):1485‐90. - PMC - PubMed
Ota 2015 {published data only}
    1. Ota K, Oishi N, Ito K, Fukuyama H, SEAD‐J Study Group, Alzheimer's Disease Neuroimaging Initiative. Effects of imaging modalities, brain atlases and feature selection on prediction of Alzheimer's disease. Journal of Neuroscience Methods 2015;256:168‐83. - PubMed
Ota 2016 {published data only}
    1. Ota K, Oishi N, Ito K, Fukuyama H, SEAD‐J Study Group, Alzheimer’s Disease Neuroimaging Initiative. Prediction of Alzheimer's disease in amnestic mild cognitive impairment subtypes: stratification based on imaging biomarkers. Journal of Alzheimer's Disease 2016;52(4):1385‐401. - PubMed
Overdorp 2014 {published data only}
    1. Overdorp EJ, Kessels RP, Claassen JA, Oosterman JM. Cognitive impairments associated with medial temporal atrophy and white matter hyperintensities: an MRI study in memory clinic patients. Frontiers in Aging Neuroscience 2014;6:98. - PMC - PubMed
Park 2013 {published data only}
    1. Park H, Yang JJ, Seo J, Lee JM, Alzheimer's Disease Neuroimaging Initiative. Dimensionality reduced cortical features and their use in predicting longitudinal changes in Alzheimer's disease. Neuroscience Letters 2013;550:17‐22. - PubMed
Park 2015 {published data only}
    1. Park MH, Han C. Is there an MCI reversion to cognitively normal? Analysis of Alzheimer's disease biomarkers profiles. International Psychogeriatrics 2015;27(3):429‐37. - PubMed
Peng 2015 {published data only}
    1. Peng GP, Feng Z, He FP, Chen ZQ, Liu XY, Liu P, et al. Correlation of hippocampal volume and cognitive performances in patients with either mild cognitive impairment or Alzheimer's disease. CNS Neuroscience & Therapeutics 2015;21(1):15‐22. - PMC - PubMed
Perani 2015 {published data only}
    1. Perani D, Cerami C, Caminiti SP, Santangelo R, Coppi E, Ferrari L, et al. Cross‐validation of biomarkers for the early differential diagnosis and prognosis of dementia in a clinical setting. European Journal of Nuclear Medicine and Molecular Imaging 2016;43(3):499‐508. - PubMed
Persson 2017 {published data only}
    1. Persson K, Barca ML, Eldholm RS, Cavallin L, Šaltytė Benth J, Selbæk G, et al. Visual evaluation of medial temporal lobe atrophy as a clinical marker of conversion from mild cognitive impairment to dementia and for predicting progression in patients with mild cognitive impairment and mild Alzheimer's disease. Dementia and Geriatric Cognitive Disorders 2017;44(1‐2):12‐24. - PubMed
Peters 2014   {published data only}
    1. Peters F, Villeneuve S, Belleville S. Predicting progression to dementia in elderly subjects with mild cognitive impairment using both cognitive and neuroimaging predictors. Journal of Alzheimer's Disease 2014;38(2):307‐18. - PubMed
Petersen 2010 {published data only}
    1. Petersen RC, Aisen PS, Beckett LA, Donohue MC, Gamst AC, Harvey DJ, et al. Alzheimer's Disease Neuroimaging Initiative (ADNI): clinical characterization. Neurology 2010;74(3):201‐9. - PMC - PubMed
Prasad 2011 {published data only}
    1. Prasad K, Wiryasaputra L, Ng A, Kandiah N. White matter disease independently predicts progression from mild cognitive impairment to Alzheimer's disease in a clinic cohort. Dementia and Geriatric Cognitive Disorders 2011;31(6):431‐4. - PubMed
Prestia 2015 {published data only}
    1. Prestia A, Caroli A, Wade SK, Flier WM, Ossenkoppele R, Berckel B, et al. Prediction of AD dementia by biomarkers following the NIA‐AA and IWG diagnostic criteria in MCI patients from three European memory clinics. Alzheimer's & Dementia 2015;11(10):1191‐201. - PubMed
Prins 2013 {published data only}
    1. Prins ND, Flier WM, Brashear HR, Knol DL, Pol LA, Barkhof F, et al. Predictors of progression from mild cognitive impairment to dementia in the placebo‐arm of a clinical trial population. Journal of Alzheimer's Disease 2013;36(1):79‐85. - PubMed
Qiu 2014 {published data only}
    1. Qiu Y, Li L, Zhou TY, Lu W, Alzheimer's Disease Neuroimaging Initiative. Alzheimer's disease progression model based on integrated biomarkers and clinical measures. Acta Pharmacologica Sinica 2014;35(9):1111‐20. - PMC - PubMed
Querbes 2009 {published data only}
    1. Querbes O, Aubry F, Pariente J, Lotterie JA, Demonet JF, Duret V, et al. Early diagnosis of Alzheimer's disease using cortical thickness: impact of cognitive reserve. Brain 2009;132(Pt 8):2036‐47. [PUBMED: 19439419] - PMC - PubMed
Raamana 2015 {published data only}
    1. Raamana PR, Weiner MW, Wang L, Beg MF, Alzheimer's Disease Neuroimaging Initiative. Thickness network features for prognostic applications in dementia. Neurobiology of Aging 2015;36 Suppl 1:S91‐S102. - PMC - PubMed
Rana 2017 {published data only}
    1. Rana AK, Sandu AL, Robertson KL, McNeil CJ, Whalley LJ, Staff RT, et al. A comparison of measurement methods of hippocampal atrophy rate for predicting Alzheimer's dementia in the Aberdeen Birth Cohort of 1936. Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring 2016;6:31‐9. - PMC - PubMed
Redolfi 2015 {published data only}
    1. Redolfi A, Manset D, Barkhof F, Wahlund LO, Glatard T, Mangin JF, et al. Head‐to‐head comparison of two popular cortical thickness extraction algorithms: a cross‐sectional and longitudinal study. PLoS One 2015;10(3):e0117692. - PMC - PubMed
Richard 2013 {published data only}
    1. Richard E, Schmand BA, Eikelenboom P, Gool WA, Alzheimer's Disease Neuroimaging Initiative. MRI and cerebrospinal fluid biomarkers for predicting progression to Alzheimer's disease in patients with mild cognitive impairment: a diagnostic accuracy study. BMJ Open 2013;3(6):e002541. - PMC - PubMed
Risacher 2010 {published data only}
    1. Risacher SL, Shen L, West JD, Kim S, McDonald BC, Beckett LA, et al. Longitudinal MRI atrophy biomarkers: relationship to conversion in the ADNI cohort. Neurobiology of Aging 2010;31(8):1401‐18. [PUBMED: 20620664] - PMC - PubMed
Ritter 2016 {published data only}
    1. Ritter K, Lange C, Weygandt M, Mäurer A, Roberts A, Estrella M, et al. Combination of structural MRI and FDG‐PET of the brain improves diagnostic accuracy in newly manifested cognitive impairment in geriatric inpatients. Journal of Alzheimer's Disease 2016;54(4):1319‐31. - PubMed
Runtti 2014 {published data only}
    1. Runtti H, Mattila J, Gils M, Koikkalainen J, Soininen H, Lötjönen J, Alzheimer’s Disease Neuroimaging Initiative. Quantitative evaluation of disease progression in a longitudinal mild cognitive impairment cohort. Journal of Alzheimer's Disease 2014;39(1):49‐61. - PubMed
Salvatore 2018 {published data only}
    1. Salvatore C, Cerasa A, Castiglioni I. MRI characterizes the progressive course of AD and predicts conversion to Alzheimer's dementia 24 months before probable diagnosis. Frontiers in Aging Neuroscience 2018;10:135. - PMC - PubMed
Sambuchi 2015 {published data only}
    1. Sambuchi N, Muraccioli I, Alescio‐Lautier B, Paban V, Sambuc R, Jouve É, et al. Subjective cognitive impairment and Alzheimer's disease: a two year follow up of 51 subjects during two years [Subjective cognitive impairment et maladie d’Alzheimer: étude d’une cohorte de 51 sujets suivis sur deux ans]. Geriatrie et Psychologie Neuropsychiatrie du Vieillissement 2015;13(4):462‐71. - PubMed
Schmitter 2014 {published data only}
    1. Schmitter D, Roche A, Maréchal B, Ribes D, Abdulkadir A, Bach‐Cuadra M, et al. Alzheimer's Disease Neuroimaging Initiative. An evaluation of volume‐based morphometry for prediction of mild cognitive impairment and Alzheimer's disease. NeuroImage: Clinical 2014;7:7‐17. - PMC - PubMed
Schuff 2009 {published data only}
    1. Schuff N, Woerner N, Boreta L, Kornfield T, Shaw LM, Trojanowski JQ, et al. MRI of hippocampal volume loss in early Alzheimer's disease in relation to ApoE genotype and biomarkers. Brain 2009;132(Pt 4):1067‐77. [PUBMED: 19251758] - PMC - PubMed
Shaffer 2013 {published data only}
    1. Shaffer JL, Petrella JR, Sheldon FC, Choudhury KR, Calhoun VD, Coleman RE, et al. Predicting cognitive decline in subjects at risk for Alzheimer disease by using combined cerebrospinal fluid, MR imaging, and PET biomarkers. Radiology 2013;266(2):583‐91. - PMC - PubMed
Sheng 2017 {published data only}
    1. Sheng C, Xia M, Yu H, Huang Y, Lu Y, Liu F, et al. Abnormal global functional network connectivity and its relationship to medial temporal atrophy in patients with amnestic mild cognitive impairment. PloS One 2017;12(6):e0179823. - PMC - PubMed
Sluimer 2009 {published data only}
    1. Sluimer JD, Flier WM, Karas GB, Schijndel R, Barnes J, Boyes RG, et al. Accelerating regional atrophy rates in the progression from normal aging to Alzheimer's disease. European Radiology 2009;19(12):2826‐33. [PUBMED: 19618189] - PMC - PubMed
Smith 2008 {published data only}
    1. Smith EE, Egorova S, Blacker D, Killiany RJ, Muzikansky A, Dickerson BC, et al. Magnetic resonance imaging white matter hyperintensities and brain volume in the prediction of mild cognitive impairment and dementia. Archives of Neurology 2008;65(1):94‐100. [PUBMED: 18195145] - PubMed
Sohn 2015 {published data only}
    1. Sohn BK, Yi D, Seo EH, Choe YM, Kim JW, Kim SG, et al. Comparison of regional gray matter atrophy, white matter alteration, and glucose metabolism as a predictor of the conversion to Alzheimer's disease in mild cognitive impairment. Journal of Korean Medical Science 2015;30(6):779‐87. - PMC - PubMed
Song 2013 {published data only}
    1. Song X, Mitnitski A, Zhang N, Chen W, Rockwood K, Alzheimer's Disease Neuroimaging Initiative. Dynamics of brain structure and cognitive function in the Alzheimer's Disease Neuroimaging Initiative. Journal of Neurology, Neurosurgery, and Psychiatry 2013;84(1):71‐8. - PubMed
Sousa 2015 {published data only}
    1. Sousa A, Gomar JJ, Goldberg TE. Neural and behavioral substrates of disorientation in mild cognitive impairment and Alzheimer's disease. Alzheimer's and Dementia: Translational Research and Clinical Interventions 2015;1(1):37‐45. - PMC - PubMed
Sousa 2016 {published data only}
    1. Sousa A, Gomar JJ, Ragland JD, Conejero‐Goldberg C, Buthorn J, Keehlisen L, et al. The relational and item‐specific encoding task in mild cognitive impairment and Alzheimer disease. Dementia and Geriatric Cognitive Disorders 2016;42(5‐6):265‐77. - PubMed
Spulber 2010 {published data only}
    1. Spulber G, Niskanen E, MacDonald S, Smilovici O, Chen K, Reiman EM, et al. Whole brain atrophy rate predicts progression from MCI to Alzheimer's disease. Neurobiology of Aging 2010;31(9):1601‐5. [PUBMED: 18829136] - PubMed
Spulber 2013 {published data only}
    1. Spulber G, Simmons A, Muehlboeck JS, Mecocci P, Vellas B, Tsolaki M, et al. An MRI‐based index to measure the severity of Alzheimer's disease‐like structural pattern in subjects with mild cognitive impairment. Journal of Internal Medicine 2013;273(4):396‐409. - PMC - PubMed
Staekenborg 2009 {published data only}
    1. Staekenborg SS, Koedam EL, Henneman WJ, Stokman P, Barkhof F, Scheltens P, et al. Progression of mild cognitive impairment to dementia: contribution of cerebrovascular disease compared with medial temporal lobe atrophy. Stroke; a Journal of Cerebral Circulation 2009;40(4):1269‐74. [PUBMED: 19228848] - PubMed
Stephan 2015 {published data only}
    1. Stephan BC, Tzourio C, Auriacombe S, Amieva H, Dufouil C, Alpérovitch A, et al. Usefulness of data from magnetic resonance imaging to improve prediction of dementia: population based cohort study. BMJ 2015;350:h2863. - PMC - PubMed
Stonnington 2018 {published data only}
    1. Stonnington CM, Chen Y, Savage CR, Lee W, Bauer RJ 3rd, Sharieff S, et al. Predicting imminent progression to clinically significant memory decline using volumetric MRI and FDG PET. Journal of Alzheimer's Disease 2018;63(2):603‐15. - PMC - PubMed
Stoub 2005 {published data only}
    1. Stoub TR, Bulgakova M, Leurgans S, Bennett DA, Fleischman D, Turner DA, et al. MRI predictors of risk of incident Alzheimer disease: a longitudinal study. Neurology 2005;64(9):1520‐4. [PUBMED: 15883311] - PubMed
Suk 2014 {published data only}
    1. Suk HI, Lee SW, Shen D, Alzheimer's Disease Neuroimaging Initiative. Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. NeuroImage 2014;101:569‐82. - PMC - PubMed
Suppa 2015a {published data only}
    1. Suppa P, Hampel H, Spies L, Fiebach JB, Dubois B, Buchert R, Alzheimer’s Disease Neuroimaging Initiative. Fully automated atlas‐based hippocampus volumetry for clinical routine: validation in subjects with mild cognitive impairment from the ADNI cohort. Journal of Alzheimer's Disease 2015;46(1):199‐209. - PubMed
Suppa 2015b {published data only}
    1. Suppa P, Anker U, Spies L, Bopp I, Rüegger‐Frey B, Klaghofer R, et al. Fully automated atlas‐based hippocampal volumetry for detection of Alzheimer's disease in a memory clinic setting. Journal of Alzheimer's Disease 2015;44(1):183‐93. - PubMed
Susanto 2015 {published data only}
    1. Susanto TA, Pua EP, Zhou J, Alzheimer’s Disease Neuroimaging Initiative. Cognition, brain atrophy, and cerebrospinal fluid biomarkers changes from preclinical to dementia stage of Alzheimer's disease and the influence of apolipoprotein e. Journal of Alzheimer's Disease 2015;45(1):253‐68. - PubMed
Sørensen 2016 {published data only}
    1. Sørensen L, Igel C, Liv Hansen N, Osler M, Lauritzen M, Rostrup E, et al. Alzheimer's Disease Neuroimaging Initiative, Australian Imaging Biomarkers and Lifestyle Flagship Study of Ageing. Early detection of Alzheimer's disease using MRI hippocampal texture. Human Brain Mapping 2016;37(3):1148‐61. - PMC - PubMed
Tang 2014 {published data only}
    1. Tang X, Holland D, Dale AM, Younes L, Miller MI, Alzheimer's Disease Neuroimaging Initiative. Shape abnormalities of subcortical and ventricular structures in mild cognitive impairment and Alzheimer's disease: detecting, quantifying, and predicting. Human Brain Mapping 2014;35(8):370‐25. - PMC - PubMed
Tang 2015 {published data only}
    1. Tang X, Holland D, Dale AM, Younes L, Miller MI. Baseline shape diffeomorphometry patterns of subcortical and ventricular structures in predicting conversion of mild cognitive impairment to Alzheimer's disease. Journal of Alzheimer's Disease 2015;44(2):599‐611. - PMC - PubMed
Tapiola 2008 {published data only}
    1. Tapiola T, Pennanen C, Tapiola M, Tervo S, Kivipelto M, Hanninen T, et al. MRI of hippocampus and entorhinal cortex in mild cognitive impairment: a follow‐up study. Neurobiology of Aging 2008;29(1):31‐8. [PUBMED: 17097769] - PubMed
Tarnanas 2014 {published data only}
    1. Tarnanas I, Tsolaki M, Nef T, M Müri R, Mosimann UP. Can a novel computerized cognitive screening test provide additional information for early detection of Alzheimer's disease?. Alzheimer's & Dementia 2014;10(6):790‐8. - PubMed
Teipel 2015 {published data only}
    1. Teipel SJ, Kurth J, Krause B, Grothe MJ, Alzheimer's Disease Neuroimaging Initiative. The relative importance of imaging markers for the prediction of Alzheimer's disease dementia in mild cognitive impairment ‐ beyond classical regression. NeuroImage: Clinical 2015;8:583‐93. - PMC - PubMed
Ten Kate 2017a {published data only}
    1. Kate M, Barkhof F, Visser PJ, Teunissen CE, Scheltens P, Flier WM, et al. Amyloid‐independent atrophy patterns predict time to progression to dementia in mild cognitive impairment. Alzheimer's Research & Therapy 2017;9(1):73. - PMC - PubMed
Tosun 2010 {published data only}
    1. Tosun D, Schuff N, Truran‐Sacrey D, Shaw LM, Trojanowski JQ, Aisen P, et al. Relations between brain tissue loss, CSF biomarkers, and the ApoE genetic profile: a longitudinal MRI study. Neurobiology of Aging 2010;31(8):1340‐54. [PUBMED: 20570401] - PMC - PubMed
Trzepacz 2014 {published data only}
    1. Trzepacz PT, Yu P, Sun J, Schuh K, Case M, Witte MM, et al. Alzheimer's Disease Neuroimaging Initiative. Comparison of neuroimaging modalities for the prediction of conversion from mild cognitive impairment to Alzheimer's dementia. Neurobiology of Aging 2014;35(1):143‐51. - PubMed
Trzepacz 2016 {published data only}
    1. Trzepacz PT, Hochstetler H, Yu P, Castelluccio P, Witte MM, Dell'Agnello G, et al. Alzheimer''s Disease Neuroimaging Initiative. Relationship of hippocampal volume to amyloid burden across diagnostic stages of Alzheimer's disease. Dementia and Geriatric Cognitive Disorders 2016;41(1‐2):68‐79. - PubMed
Van Maurik 2016 {published data only}
    1. Maurik IS, Bouwman FH, Teunissen CE, Scheltens P, Barkhof F, Wattjes M, et al. Personalized risk estimates for MCI patients: taking biomarkers into the clinic. Alzheimer's & Dementia 2016;12 Suppl 7:P393.
Vannini 2007 {published data only}
    1. Vannini P, Almkvist O, Dierks T, Lehmann C, Wahlund LO. Reduced neuronal efficacy in progressive mild cognitive impairment: a prospective fMRI study on visuospatial processing. Psychiatry Research 2007;156(1):43‐57. [PUBMED: 17719211] - PubMed
Van Rossum 2012 {published data only}
    1. Rossum IA, Vos SJ, Burns L, Knol DL, Scheltens P, Soininen H, et al. Injury markers predict time to dementia in subjects with MCI and amyloid pathology. Neurology 2012;79(17):1809‐16. - PMC - PubMed
Varon 2011 {published data only}
    1. Varon D, Loewenstein DA, Potter E, Greig MT, Agron J, Shen Q, et al. Minimal atrophy of the entorhinal cortex and hippocampus: progression of cognitive impairment. Dementia and Geriatric Cognitive Disorders 2011;31(4):276‐83. - PMC - PubMed
Varon 2015 {published data only}
    1. Varon D, Barker W, Loewenstein D, Greig M, Bohorquez A, Santos I, et al. Alzheimer's Disease Neuroimaging Initiative. Visual rating and volumetric measurement of medial temporal atrophy in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort: baseline diagnosis and the prediction of MCI outcome. International Journal of Geriatric Psychiatry 2015;30(2):192‐200. - PubMed
Vasta 2016 {published data only}
    1. Vasta R, Augimeri A, Cerasa A, Nigro S, Gramigna V, Nonnis M, et al. for The Alzheimer's Disease Neuroimaging Initiative. Hippocampal subfield atrophies in converted and not‐converted mild cognitive impairments patients by a Markov random fields algorithm. Current Alzheimer Research 2016;13(5):566‐74. - PubMed
Vemuri 2009 {published data only}
    1. Vemuri P, Wiste HJ, Weigand SD, Shaw LM, Trojanowski JQ, Weiner MW, et al. MRI and CSF biomarkers in normal, MCI, and AD subjects: predicting future clinical change. Neurology 2009;73(4):294‐301. [PUBMED: 19636049] - PMC - PubMed
Verma 2018 {published data only}
    1. Verma N, Beretvas SN, Pascual B, Masdeu JC, Markey MK, Alzheimer's Disease Neuroimaging Initiative. A biomarker combining imaging and neuropsychological assessment for tracking early Alzheimer's disease in clinical trials. Current Alzheimer Research 2018;15(5):429‐42. - PubMed
Villemagne 2013 {published data only}
    1. Villemagne VL, Burnham S, Bourgeat P, Brown B, Ellis KA, Salvado, et al. Australian Imaging Biomarkers and Lifestyle (AIBL) Research Group. Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer's disease: a prospective cohort study. Lancet Neurology 2013;12(4):357‐67. - PubMed
Vos 2012 {published data only}
    1. Vos S, Rossum I, Burns L, Knol D, Scheltens P, Soininen H, et al. Test sequence of CSF and MRI biomarkers for prediction of AD in subjects with MCI. Neurobiology of Aging 2012;33(10):2272‐81. - PubMed
Vos 2013 {published data only}
    1. Vos SJ, Rossum IA, Verhey F, Knol DL, Soininen H, Wahlund LO, et al. Prediction of Alzheimer disease in subjects with amnestic and non amnestic MCI. Neurology 2013;80(12):1124‐32. - PubMed
Wahlund 2003 {published data only}
    1. Wahlund LO, Blennow K. Cerebrospinal fluid biomarkers for disease stage and intensity in cognitively impaired patients. Neuroscience Letters 2003;339(2):99‐102. [PUBMED: 12614904] - PubMed
Walhovd 2010 {published data only}
    1. Walhovd KB, Fjell AM, Brewer J, McEvoy LK, Fennema‐Notestine C, Hagler DJ Jr, et al. Combining MR imaging, positron‐emission tomography, and CSF biomarkers in the diagnosis and prognosis of Alzheimer disease. American Journal of Neuroradiology 2010;31(2):347‐54. [PUBMED: 20075088] - PMC - PubMed
Wang 2009 {published data only}
    1. Wang H, Golob E, Bert A, Nie K, Chu Y, Dick MB, et al. Alterations in regional brain volume and individual MRI‐guided perfusion in normal control, stable mild cognitive impairment, and MCI‐AD converter. Journal of Geriatric Psychiatry and Neurology 2009;22(1):35‐45. [PUBMED: 19150973] - PubMed
Wang 2016 {published data only}
    1. Wang S, Zhang Y, Liu G, Phillips P, Yuan TF. Detection of Alzheimer's disease by three‐dimensional displacement field estimation in structural magnetic resonance imaging. Journal of Alzheimer's Disease 2016;50(1):233‐48. - PubMed
Wee 2013 {published data only}
    1. Wee CY, Yap PT, Shen D. Prediction of Alzheimer's disease and mild cognitive impairment using cortical morphological patterns. Human Brain Mapping 2013;34(12):3411‐25. - PMC - PubMed
Wei 2016 {published data only}
    1. Wei R, Li C, Fogelson N, Li L. Prediction of conversion from mild cognitive impairment to Alzheimer's disease using MRI and structural network features. Frontiers in Aging Neuroscience 2016;8:76. - PMC - PubMed
Weise 2015 {published data only}
    1. Weise D, Tiepolt S, Awissus C, Hoffmann KT, Lobsien D, Kaiser T, et al. Critical comparison of different biomarkers for Alzheimer's disease in a clinical setting. Journal of Alzheimer's Disease 2015;48(2):425‐32. - PubMed
Westman 2012 {published data only}
    1. Westman E, Muehlboeck JS, Simmons A. Combining MRI and CSF measures for classification of Alzheimer's disease and prediction of mild cognitive impairment conversion. NeuroImage 2012;62(1):229‐38. - PubMed
Whitwell 2007 {published data only}
    1. Whitwell JL, Przybelski SA, Weigand SD, Knopman DS, Boeve BF, Petersen RC, et al. 3D maps from multiple MRI illustrate changing atrophy patterns as subjects progress from mild cognitive impairment to Alzheimer's disease. Brain 2007;130(Pt 7):1777‐86. [PUBMED: 17533169] - PMC - PubMed
Whitwell 2008 {published data only}
    1. Whitwell JL, Shiung MM, Przybelski SA, Weigand SD, Knopman DS, Boeve BF, et al. MRI patterns of atrophy associated with progression to AD in amnestic mild cognitive impairment. Neurology 2008;70(7):512‐20. [PUBMED: 17898323] - PMC - PubMed
Willette 2014 {published data only}
    1. Willette AA, Calhoun VD, Egan JM, Kapogiannis D, Alzheimer׳s Disease Neuroimaging Initiative. Prognostic classification of mild cognitive impairment and Alzheimer's disease: MRI independent component analysis. Psychiatry Research 2014;224(2):81‐8. - PMC - PubMed
Wolk 2009 {published data only}
    1. Wolk DA, Price JC, Saxton JA, Snitz BE, James JA, Lopez OL, et al. Amyloid imaging in mild cognitive impairment subtypes. Annals of Neurology 2009;65(5):557‐68. [PUBMED: 19475670] - PMC - PubMed
Wolz 2010 {published data only}
    1. Wolz R, Heckemann RA, Aljabar P, Hajnal JV, Hammers A, Lötjönen J, et al. Alzheimer's Disease Neuroimaging Initiative. Measurement of hippocampal atrophy using 4D graph‐cut segmentation: application to ADNI. NeuroImage 2010;52(1):109‐18. - PubMed
Xu 2015 {published data only}
    1. Xu L, Wu X, Chen K, Yao L. Multi‐modality sparse representation‐based classification for Alzheimer's disease and mild cognitive impairment. Computer Methods and Programs in Biomedicine 2015;122(2):182‐90. - PubMed
Xu 2016 {published data only}
    1. Xu L, Wu X, Li R, Chen K, Long Z, Zhang J, et al. Alzheimer’s Disease Neuroimaging Initiative. Prediction of progressive mild cognitive impairment by multi‐modal neuroimaging biomarkers. Journal of Alzheimer's Disease 2016;51(4):1045‐56. - PubMed
Yamaguchi 2002 {published data only}
    1. Yamaguchi S, Meguro K, Shimada M, Ishizaki J, Yamadori A, Sekita Y. Five‐year retrospective changes in hippocampal atrophy and cognitive screening test performances in very mild Alzheimer's disease: the Tajiri Project. Neuroradiology 2002;44(1):43‐8. [PUBMED: 11942499] - PubMed
Yang 2012 {published data only}
    1. Yang X, Tan MZ, Qiu A. CSF and brain structural imaging markers of the Alzheimer's pathological cascade. PLoS One 2012;7(12):e47406. - PMC - PubMed
Ye 2012 {published data only}
    1. Ye J, Farnum M, Yang E, Verbeeck R, Lobanov V, Raghavan N, et al. Alzheimer’s Disease Neuroimaging Initiative. Sparse learning and stability selection for predicting MCI to AD conversion using baseline ADNI data. BMC neurology 2012;12:46. - PMC - PubMed
Yi 2016 {published data only}
    1. Yi HA, Möller C, Dieleman N, Bouwman FH, Barkhof F, Scheltens P, et al. Relation between subcortical grey matter atrophy and conversion from mild cognitive impairment to Alzheimer's disease. Journal of Neurology, Neurosurgery, and Psychiatry 2016;87(4):425‐32. - PubMed
Young 2013 {published data only}
    1. Young J, Modat M, Cardoso MJ, Mendelson A, Cash D, Ourselin S, Alzheimer's Disease Neuroimaging Initiative. Accurate multimodal probabilistic prediction of conversion to Alzheimer's disease in patients with mild cognitive impairment. NeuroImage: Clinical 2013;2:735‐45. - PMC - PubMed
Youssofzadeh 2017 {published data only}
    1. Youssofzadeh V, McGuinness B, Maguire LP, Wong‐Lin K. Multi‐kernel learning with Dartel improves combined MRI‐PET classification of Alzheimer's disease in AIBL data: group and individual analyses. Frontiers in Human Neuroscience 2017;11:380. - PMC - PubMed
Yu 2012 {published data only}
    1. Yu P, Dean RA, Hall SD, Qi Y, Sethuraman G, Willis BA, et al. Enriching amnestic mild cognitive impairment populations for clinical trials: optimal combination of biomarkers to predict conversion to dementia. Journal of Alzheimer's Disease 2012;32(2):373‐85. - PubMed
Yu 2014 {published data only}
    1. Yu G, Liu Y, Thung KH, Shen D. Multi‐task linear programming discriminant analysis for the identification of progressive MCI individuals. PLoS One 2014;9(5):e96458. - PMC - PubMed
Yun 2015 {published data only}
    1. Yun HJ, Kwak K, Lee JM, Alzheimer’s Disease Neuroimaging Initiative. Multimodal discrimination of Alzheimer's disease based on regional cortical atrophy and hypometabolism. PLoS One 2015;10(6):e129250. - PMC - PubMed
Zhang 2012a {published data only}
    1. Zhang D, Shen D, Alzheimer's Disease Neuroimaging Initiative. Multi‐modal multi‐task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease. NeuroImage 2012;59(2):895‐907. - PMC - PubMed
Zhang 2012b {published data only}
    1. Zhang N, Song X, Zhang Y, Alzheimer's Disease Neuroimaging Initiative. Combining structural brain changes improves the prediction of Alzheimer's disease and mild cognitive impairment. Dementia and Geriatric Cognitive Disorders 2012;33(5):318‐26. - PMC - PubMed
Zheng 2015 {published data only}
    1. Zheng W, Yao Z, Hu B, Gao X, Cai H, Moore P. Novel cortical thickness pattern for accurate detection of Alzheimer's disease. Journal of Alzheimer's Disease 2015;48(4):995‐1008. - PubMed
Zhou 2014 {published data only}
    1. Zhou Q, Goryawala M, Cabrerizo M, Wang J, Barker W, Loewenstein DA, et al. An optimal decisional space for the classification of Alzheimer's disease and mild cognitive impairment. IEEE Transactions on Biomedical Engineering 2014;61(8):2245‐53. - PubMed
Zhou 2019 {published data only}
    1. Zhou H, Jiang J, Lu J, Wang M, Zhang H, Zuo C, Alzheimer’s Disease Neuroimaging Initiative. Dual‐model radiomic biomarkers predict development of mild cognitive impairment progression to Alzheimer's disease. Frontiers in Neuroscience 2019;12:1045. - PMC - PubMed

Additional references

ADI 2019
    1. Alzheimer’s Disease International. World Alzheimer Report 2019: Attitudes to Dementia. London: Alzheimer’s Disease International, 2019.
ADNI 2010
    1. Alzheimer's Disease Neuroimaging Initiative (ADNI). ADNI procedures, protocols and grants. www.adni‐info.org (accessed 25 Apri 2018).
Albert 2011
    1. Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging‐Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's & Dementia 2011;7(3):270‐9. - PMC - PubMed
American Psichiatric Association 2000
    1. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Text Revision (DSM‐IV‐TR). 4th Edition. Washington, DC: American Psychiatric Association, 2000.
American Psychiatric Association 2013
    1. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders DSM‐5. Washington, DC: American Psychiatric Association, 2013.
Bobinski 2000
    1. Bobinski M, Leon MJ, Wegiel J, Desanti S, Convit A, Saint Louis LA, et al. The histological validation of post mortem magnetic resonance imaging determined hippocampal volume in Alzheimer’s disease. Neuroscience 2000;95:721–5. - PubMed
Bossuyt 2013
    1. Bossuyt P, Davenport C, Deeks J, Hyde C, Leeflang M, Scholten R. Chapter 11: Interpreting results and drawing conclusions. In: Deeks JJ, Bossuyt PM, Gatsonis C (editors), Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy Version 0.9. The Cochrane Collaboration, 2013. Available from: srdta.cochrane.org. [Available from: http://srdta.cochrane.org/.]
Bäckman 2004
    1. Bäckman L, Jones S, Berger AK, Laukka EJ, Small BJ. Multiple cognitive deficits during the transition to Alzheimers disease. Journal of Internal Medicine 2004;256(3):195‐204. - PubMed
Carmichael 2005
    1. Carmichael OT, Aizenstein HA, Davis SW, Becker JT, Thompson PM, Meltzer CC, et al. Atlas‐based hippocampus segmentation in Alzheimer’s disease and mild cognitive impairment. NeuroImage 2005;27(4):979–90. [PUBMED: 15990339] - PMC - PubMed
De Vet 2008
    1. Vet HC, Eisinga A, Riphagen II, Aertgeerts B, Pewsner D. Chapter 7: Searching for Studies. In: Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy Version 0.4 (September 2008). The Cochrane Collaboration, 2008: Section 7.2.1.2. Available from srdta.cochrane.org/handbook‐dta‐reviews.
deToledo‐Morrell 1997
    1. deToledo‐Morrell L, Sullivan MP, Morrell F, Wilson RS, Bennett DA, Spencer S. Alzheimer’s disease: in vivo detection of differential vulnerability of brain regions. Neurobiology of Aging 1997;18:438–63. - PubMed
Doust 2005
    1. Doust JA, Pietrzak E, Sanders S, Glasziou PP. Identifying studies for systematic reviews of diagnostic tests was difficult due to the poor sensitivity and precision of methodologic filters and the lack of information in the abstract. Journal of Clinical Epidemiology 2005;58(5):444‐9. [PUBMED: 15845330] - PubMed
Duvernoy 1988
    1. Duvernoy H. The human hippocampus. An atlas of applied anatomy. München: JF Bergmann Verlag, 1988.
Erkinjuntti 2000
    1. Erkinjuntti T, Inzitari D, Pantoni L, Wallin A, Scheltens P, Rockwood K. Research criteria for subcortical vascular dementia in clinical trials. Journal of Neural Transmission 2000;Suppl(59):23‐30. - PubMed
European Medicines Agency 2011
    1. European Medicines Agency. Qualification opinion of low hippocampal volume (atrophy) by MRI for use in clinical trials for regulatory purpose ‐ in pre‐dementia stage of Alzheimer’s disease. www.ema.europa.eu/docs/en_GB/document_library/Regulatory_and_procedural_... (accessed 16 March 2019).
Fischl 2004
    1. Fischl B, Salat DH, Kouwe AJ, Makris N, Ségonne F, Quinn BT, et al. Sequence‐independent segmentation of magnetic resonance images. NeuroImage 2004;23 Suppl 1.:S69‐84. - PubMed
Frisoni 2010a [pers comm]
    1. Frisoni GB. Numbers needed to construct 2x2 tables for medial temporal lobe volume. Reference standard [personal communication]. Email to: F Pasquier and S Bombois 1 February 2010.
Frisoni 2010b [pers comm]
    1. Frisoni GB. Numbers needed to construct 2x2 table for total hippocampal volume [personal communication]. Email to: H Malmgren and C Eckerström 9 February 2010.
Frisoni 2010c [pers comm]
    1. Frisoni GB. Numbers needed to construct 2x2 table for total hippocampal volume, brain volume, ventricular volume [personal communication]. Emal to: D Erten‐Lyons 10 February 2010.
Frisoni 2010d [pers comm]
    1. Frisoni GB. Numbers needed to construct 2x2 tables [personal communication]. Email to: LL Chao 20 March 2010.
Frisoni 2010e [pers comm]
    1. Frisoni GB. Numbers needed to construct 2x2 table for total volumes of hippocampus and whole brain volume. Baseline characteristics of participants [personal communication]. Email to: WM van der Flier 30 March 2010.
Frisoni 2010f [pers comm]
    1. Frisoni GB. Numbers needed to construct 2x2 table for the medial temporal lobe atrophy. Baseline patients' characteristics [personal communication]. Email to: GB Karas 30 March 2010.
Frisoni 2010g [pers comm]
    1. Frisoni GB. Numbers needed to construct 2x2 table for total hippocampal volume and intracranial volume. Baseline patients' characteristics [personal communication]. Email to: CR Jack 23 April 2010.
Frisoni 2010h [pers comm]
    1. Frisoni GB. Numbers needed to construct 2x2 table for lateral ventricular and whole brain volume [personal communication]. Email to: OT Charmichael 30 April 2010.
Frisoni 2010i [pers comm]
    1. Frisoni GB. Numbers needed to construct 2x2 table for total volume of hippocampus [personal communication]. Email to: A Caroli 21 May 2010.
Frisoni 2010j [pers comm]
    1. Frisoni GB. Numbers needed to construct 2x2 table for left, right hippocampal volume, left and right entorhinal volume, intracranial volume [personal communication]. Email to: DB Devanand 3 June 2010.
Frisoni 2010k [pers comm]
    1. Frisoni GB. Numbers needed to construct 2x2 table for hippocampus and entorhinal cortex [personal communication]. Email to: T Tapiola 20 June 2010.
Frisoni 2010l [pers comm]
    1. Frisoni GB. Numbers needed to construct 2x2 tables [personal communication]. Email to: L DeToledo 20 July 2010.
Frisoni 2010m [pers comm]
    1. Frisoni GB. Numbers needed to construct 2x2 table. Baseline patients' characteristics [personal communication]. Email to: A Fellgiebel 20 July 2010.
Frisoni 2010n [pers comm]
    1. Frisoni GB. Numbers needed to construct 2x2 table. Baseline patients' characteristics [personal communication]. Email to: C Geroldi 20 July 2010.
Frisoni 2010o [pers comm]
    1. Frisoni GB. Numbers needed to construct 2x2 table [personal communication]. Email to: ES Korf 20 July 2010.
Frisoni 2010p [pers comm]
    1. Frisoni GB. Numbers needed to construct 2x2 tables for hippocampus, parahippocampal gyrus, lateral temporal lobe and intracranial volumes. Baseline patients' characteristics [personal communication]. Email to: PJ Visser 2 September 2010.
Frisoni 2010q [pers comm]
    1. Frisoni GB. Numbers needed to construct 2x2 table for left, right, total volumes of hippocampus and entorhinal cortex [personal communication]. Email to: SK Herukka 24 September 2010.
Frisoni 2010r [pers comm]
    1. Frisoni GB. Numbers needed to construct 2x2 table for total volumes of hippocampus, amygdala volume and total intracranial volume. Baseline characteristics of participants [personal communication]. Email to: PN Wang 29 October 2010.
Frisoni 2010s [pers comm]
    1. Frisoni GB. Numbers needed to construct 2x2 table for the hippocampal volume [personal communication]. Email to: CR Jack 29 October 2010.
Frisoni 2012 [pers comm]
    1. Frisoni GB. Numbers needed to construct 2x2 table for the medial temporal lobe atrophy. Baseline patients' characteristics [personal communication]. Email to: BC Dickerson 20 June 2012.
Frisoni 2013
    1. Frisoni GB, Bocchetta M, Chételat G, Rabinovici GD, Leon MJ, Kaye J, et al. Imaging markers for Alzheimer disease: which vs how. Neurology 2013;81(5):487‐500. - PMC - PubMed
Frisoni 2016a [pers comm]
    1. Frisoni GB. Numbers needed to construct 2x2 table. MRI technique. Baseline patients' characteristics [personal communication]. Email to: DE Barnes 19 October 2016.
Frisoni 2016b [pers comm]
    1. Frisoni GB. Numbers needed to construct 2x2 table for the medial temporal lobe atrophy. Baseline patients' characteristics [personal communication]. Email to: R Duara 19 October 2016.
Frisoni 2016c [pers comm]
    1. Frisoni GB. Numbers needed to construct 2x2 table for the medial temporal lobe atrophy. Baseline patients' characteristics [personal communication]. Email to: DB Devanand 19 October 2016.
Frisoni 2016d [pers comm]
    1. Frisoni GB. Numbers needed to construct 2x2 table for hippocampal volume [personal communication]. Email to: A Prestia 20 October 2016.
Frisoni 2016e [pers comm]
    1. Frisoni GB. Numbers needed to construct 2x2 table for the medial temporal lobe atrophy. Baseline patients' characteristics [personal communication]. Email to: SJ Vos 20 October 2016.
Frisoni 2016f [pers comm]
    1. Frisoni GB. Numbers needed to construct 2x2 table [personal communication]. Email to: CR Jack 20 October 2016.
Frisoni 2017a
    1. Frisoni GB, Boccardi M, Barkhof F, Blennow K, Cappa S, Chiotis K, et al. Strategic roadmap for an early diagnosis of Alzheimer's disease based on biomarkers. Lancet Neurology 2017;16(8):661‐76. - PubMed
Frisoni 2017b [pers comm]
    1. Frisoni GB. Numbers needed to construct 2x2 tables for medial temporal lobe atrophy [personal communication]. Email to: HF Rhodius‐Meester 27 February 2017.
Galton 2001
    1. Galton CJ, Gomez‐Anson B, Antoun N, Scheltens P, Patterson K, Graves M, et al. Temporal lobe rating scale: application to Alzheimer's disease and frontotemporal dementia. Journal of Neurology, Neurosurgery, and Psychiatry 2001;70(2):165‐73. - PMC - PubMed
Goncharova 2001
    1. Goncharova II, Dickerson BC, Stoub TR, deToledo‐Morrell L. MRI of entorhinal cortex: a reliable protocol for volumetric measurement. Neurobiology of Aging 2001;22:737–45. - PubMed
GRADEpro GDT [Computer program]
    1. McMaster University (developed by Evidence Prime). GRADEproGDT. Hamilton (ON): McMaster University (developed by Evidence Prime), accessed 29 January 2019.
Graham 1997
    1. Graham JE, Rockwood K, Beattie BL, Eastwood R, Gauthier S, Tuokko H, et al. Prevalence and severity of cognitive impairment with and without dementia in an elderly population. Lancet 1997;349(9068):1793‐6. - PubMed
Hilden 1996
    1. Hilden J, Glasziou P. Regret graphs, diagnostic uncertainty and Youden's Index. Statistics in Medicine 1996;15(10):969‐86. - PubMed
Jack 1992
    1. Jack CR Jr, Petersen RC, O'Brien PC, Tangalos EG. MR‐based hippocampal volumetry in the diagnosis of Alzheimer's disease. Neurology 1992;42:183–8. [PUBMED: 1734300] - PubMed
Jack 2008b
    1. Jack CR Jr, Bernstein MA, Fox NC, Thompson P, Alexander G, Harvey D, et al. The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI methods. Journal of Magnetic Resonance Imaging 2008;4:685‐91. - PMC - PubMed
Jack 2018
    1. Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA‐AA research framework: toward a biological definition of Alzheimer's disease. Alzheimer's & Dementia 2018;14(4):535‐62. - PMC - PubMed
Killiany 2002
    1. Killiany RJ, Hyman BT, Gomez‐Isla T, Moss MB, Kikinis R, Jolesz F, et al. MRI measures of entorhinal cortex vs hippocampus in preclinical AD. Neurology 2002;58:1188–96. - PubMed
Leandrou 2018
    1. Leandrou S, Petroudi S, Kyriacou PA, Reyes‐Aldasoro CC, Pattichis CS. Quantitative MRI brain studies in mild cognitive impairment and Alzheimer's disease: a methodological review. IEEE reviews in biomedical engineering 2018;11:97‐111. - PubMed
Ledig 2015
    1. Ledig C, Heckemann RA, Hammers A, Lopez JC, Newcombe VF, Makropoulos A, et al. Robust whole‐brain segmentation: application to traumatic brain injury. Medical Image Analysis 2015;21:40‐58. - PubMed
Leeflang 2008
    1. Leeflang MM, Moons KG, Reitsma JB, Zwinderman AH. Bias in sensitivity and specificity caused by data‐driven selection of optimal cutoff values: mechanisms, magnitude, and solutions. Clinical Chemistry 2008;54(4):729‐37. - PubMed
Lehéricy 1994
    1. Lehéricy S, Baulac M, Chiras J, Piérot L, Martin N, Pillon B, et al. Amygdalohippocampal MR volume measurements in the early stages of Alzheimer disease. American Journal of Neuroradiology 1994;15(5):929‐37. [PUBMED: 8059663] - PMC - PubMed
Lijmer 1999
    1. Lijmer JG, Mol BW, Heisterkamp S, Bonsel GJ, Prins MH, Van derMeulen JH. Empirical evidence of design‐related bias in studies of diagnostic tests. Journal of the American Medical Association 1999;282:1061‐6. - PubMed
Livingston 2017
    1. Livingston G, Sommerlad A, Orgeta V, Costafreda SG, Huntley J, Ames D, et al. Dementia prevention, intervention, and care. Lancet 2017;390(10113):2673‐734. - PubMed
Lopez 2003
    1. Lopez OL, Jagust WJ, Becker ST. Prevalence and classification of mild cognitive impairment in the Cardiovascular Health Study Cognition Study: Part 1. Archives of Neurology 2003;60:1385–9. [PUBMED: 14568808] - PubMed
Lovestone 2009
    1. Lovestone S, Francis P, Kloszewska I, Mecocci P, Simmons A, Soininen H, et al. AddNeuroMed‐‐the European collaboration for the discovery of novel biomarkers for Alzheimer's disease. Annals of the New York Academy of Sciences 2009;1180:36‐46. - PubMed
Lötjönen 2011
    1. Lötjönen J, Wolz R, Koikkalainen J, Julkunen V, Thurfjell L, Lundqvist R, et al. Fast and robust extraction of hippocampus from MR images for diagnostics of Alzheimer's disease. NeuroImage 2011;56(1):185‐96. - PMC - PubMed
Macaskill 2010
    1. Macaskill P, Gatsonis C, Deeks JJ, Harbord RM, Takwoingi Y. Chapter10: Analysing and presenting results. In: Deeks JJ, Bossuyt PM, Gatsonis C (editors), Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy Version 1.0. The Cochrane Collaboration, 2010. Available from: srdta.cochrane.org.
Martínez 2017
    1. Martínez G, Vernooij RW, Fuentes Padilla P, Zamora J, Bonfill Cosp X, Flicker L. 18F PET with florbetapir for the early diagnosis of Alzheimer’s disease dementia and other dementias in people with mild cognitive impairment (MCI). Cochrane Database of Systematic Reviews 2017, Issue 11. [DOI: 10.1002/14651858.CD012216.pub2] - DOI - PMC - PubMed
McCleery 2019
    1. McCleery J, Flicker L, Richard E, Quinn TJ. The National Institute on Aging and Alzheimer's Association research framework: a commentary from the Cochrane Dementia and Cognitive Improvement Group. Alzheimer's & Dementia 2019;15(1):179‐81. - PubMed
McKhaan 2011
    1. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, et al. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging‐Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's & Dementia 2011;7(3):263‐9. - PMC - PubMed
McKhann 1984
    1. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer's disease: report of the NINCDS‐ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 1984;34(7):939‐44. - PubMed
Mitchell 2009
    1. Mitchell AJ, Shiri‐Feshki M. Rate of progression of mild cognitive impairment to dementia‐‐meta‐analysis of 41 robust inception cohort studies. Acta Psychiatrica Scandinavica 2009;119(4):252‐65. - PubMed
Morris 1993
    1. Morris JC. The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology 1993;43(11):2412‐4. - PubMed
NICE 2018
    1. National Institute for Health and Clinical Excellence Clinical Practice Guideline NG97. Dementia: assessment, management and support for people living with dementia and their carers. Available from www.nice.org.uk/guidance/ng97 2018. - PubMed
Noel‐Storr 2014
    1. Noel‐Storr AH, McCleery JM, Richard E, Ritchie CW, Flicker L, Cullum SJ, et al. Reporting standards for studies of diagnostic test accuracy in dementia: the STARDdem Initiative. Neurology 2014;83(4):364‐73. - PMC - PubMed
Palmer 2008
    1. Palmer K, Bäckman L, Winblad B, Fratiglioni L. Mild cognitive impairment in the general population: occurrence and progression to Alzheimer disease. American Journal of Geriatric Psychiatry 2008;16:603‐11. - PubMed
Pantel 2000
    1. Pantel J, O'Leary DS, Cretsinger K, Bockholt HJ, Keefe H, Magnotta VA, et al. A new method for the in vivo volumetric measurement of the human hippocampus with high neuroanatomical accuracy. Hippocampus 2000;10(6):752–8. - PubMed
Patenaude 2011
    1. Patenaude B, Smith SM, Kennedy DN, Jenkinson M. A Bayesian model of shape and appearance for subcortical brain segmentation. NeuroImage 2011;56:907‐22. - PMC - PubMed
Payton 2018
    1. Payton NM, Kalpouzos G, Rizzuto D, Fratiglioni L, Kivipelto M, Bäckman L, et al. Combining cognitive, genetic, and structural neuroimaging markers to identify individuals with increased dementia risk. Journal of Alzheimer's disease 2018;64(2):533‐42. - PMC - PubMed
Petersen 1999
    1. Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment. Archives of Neurology 1999;56:303‐8. - PubMed
Petersen 2001
    1. Petersen RC, Doody R, Kurz A, Mohs RC, Morris JC, Rabins PV, et al. Current concepts in mild cognitive impairment. Archives of Neurology 2001;58:1985‐92. - PubMed
Petersen 2004
    1. Petersen RC. Mild cognitive impairment as a diagnostic entity. Journal of Internal Medicine 2004;256:183‐94. - PubMed
Petersen 2009
    1. Petersen R, Knopman D, Boeve B, Geda YE, Ivnik RJ, Smith GE, et al. Mild cognitive impairment: ten years later. Archives of Neurology 2009;66:1447–55. - PMC - PubMed
Pruessner 2002
    1. Pruessner JC, Köhler S, Crane J, Pruessner M, Lord C, Byrne A, et al. Volumetry of temporo‐polar, perirhinal, entorhinal and parahippocampal cortex from high‐resolution MR images: considering the variability of the collateral sulcus. Cerebral Cortex 2002;12:1342–53. - PubMed
Reisberg 1982
    1. Reisberg B, Ferris SH, Leon MJ, Crook T. The Global Deterioration Scale for assessment of primary degenerative dementia. American Journal of Psychiatry 1982;139:1136‐9. - PubMed
Ritchie 2014
    1. Ritchie C, Smailagic N, Noel‐Storr AH, Takwoingi Y, Flicker L, Mason SE, et al. Plasma and cerebrospinal fluid amyloid beta for the diagnosis of Alzheimer's disease dementia and other dementias in people with mild cognitive impairment (MCI). Cochrane Database of Systematic Reviews 2014, Issue 6. [DOI: 10.1002/14651858.CD008782.pub4] - DOI - PMC - PubMed
Ritchie 2017
    1. Ritchie C, Smailagic N, Noel‐Storr AH, Ukoumunne O, Ladds EC, Martin S. CSF tau and the CSF tau/ABeta ratio for the diagnosis of Alzheimer's disease dementia and other dementias in people with mild cognitive impairment (MCI). Cochrane Database of Systematic Reviews 2017, Issue 3. [DOI: 10.1002/14651858.CD010803.pub2] - DOI - PMC - PubMed
Roberts 2010
    1. Roberts JS, Karlawish JH, Uhlmann WR, Petersen RC, Green RC. Mild cognitive impairment in clinical care: a survey of American Academy of Neurology members. Neurology 2010;75(5):425‐31. - PMC - PubMed
Rutter 2001
    1. Rutter CA, Gatsonis CA. A hierarchical regression approach to meta‐analysis of diagnostic test accuracy evaluations. Statistics in Medicine 2001;20:2865‐84. - PubMed
Scheltens 1992
    1. Scheltens P, Leys D, Barkhof F, Huglo D, Weinstein HC, Vermersch P, et al. Atrophy of medial temporal lobes on MRI in "probable" Alzheimer's disease and normal ageing: diagnostic value and neuropsychological correlates. Journal of Neurology, Neurosurgery, and Psychiatry 1992;55(10):967‐72. [PUBMED: 1431963] - PMC - PubMed
Scheltens 1997
    1. Scheltens P, Pasquier F, Weerts J, Barkhof F, Leys D. Qualitative assessment of cerebral atrophy on MRI: inter‐ and intra‐observer reproducibility in dementia and normal aging. European Journal of Neurology 1997;37:95‐9. - PubMed
Schunemann 2008
    1. Schunemann HJ, Oxman AD, Brozek J, Glasziou P, Jaeschke R, Vist GE, et al. Grading quality of evidence and strength of recommendations for diagnostic tests and strategies. BMJ 2008;336:1106‐10. - PMC - PubMed
Schünemann 2016
    1. Schünemann HJ, Mustafa R, Brozek J, Santesso N, AlonsoCoello P, Guyatt G, et al. GRADE Guidelines: 16. GRADE evidence to decision frameworks for tests in clinical practice and public health. Journal of Clinical Epidemiology 2016;76:89‐98. - PubMed
Simmons 2009
    1. Simmons A, Westman E, Muehlboeck S, Mecocci P, Vellas B, Tsolaki M, et al. for the AddNeuroMed Consortium. MRI measures of Alzheimer’s disease and the AddNeuroMed study. Biomarkers in Brain Disease: the New York Academy of Sciences 2009;1180:47–55. - PubMed
Smailagic 2015
    1. Smailagic N, Vacante M, Hyde C, Martin S, Ukoumunne O, Sachpekidis C. 18F‐FDG PET for the early diagnosis of Alzheimer’s disease dementia and other dementias in people with mild cognitive impairment (MCI). Cochrane Database of Systematic Reviews 2015, Issue 1. [DOI: 10.1002/14651858.CD010632.pub2] - DOI - PMC - PubMed
Takwoingi 2010
    1. Takwoingi Y, Deeks JJ. MetaDAS: A SAS macro for meta‐analysis of diagnostic accuracy studies. User Guide Version 1.3.. Available from: http://srdta.cochrane.org/ 2010 July.
Teipel 2013
    1. Teipel S, Grothe M, Lista S, Toschi N, Francesco G, Garaci FG, et al. Relevance of magnetic resonance imaging for early detection and diagnosis of Alzheimer disease. Medical Clinics of North America 2013;97(3):399‐424. - PubMed
Ten Kate 2017b
    1. Kate M, Barkhof F, Boccardi M, Visser PJ, Jack CR Jr, Lovblad KO, et al. Clinical validity of medial temporal atrophy as a biomarker for Alzheimer's disease in the context of a structured 5‐phase development framework. Neurobiology of Aging 2017;52:167‐82. - PubMed
The Lund and Manchester Groups 1994
    1. The Lund and Manchester Groups. Clinical and neuropathological criteria for frontotemporal dementia. Journal of Neurology, Neurosurgery and Psychiatry 1994;57(4):416‐8. - PMC - PubMed
US Food and Drug Administration 2015
    1. US Food, Drug Administration. Biomarker letter of support for baseline low hippocampal volume measured by MRI as an exploratory prognostic biomarker for enrichment in clinical trials for Alzheimer’s disease. www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/UCM439714.pdf (accessed 16 March 2019).
Van de Pol 2007
    1. Pol LA, Barnes J, Scahill RI, Frost C, Lewis EB, Boyes RG, et al. Improved reliability of hippocampal atrophy rate measurement in mild cognitive impairment using fluid registration. NeuroImage 2007;34(3):1036‐41. - PubMed
Van de Pol 2014
    1. Pol LA, Scheltens P. Medial temporal lobe atrophy scores translated to clinical practice: editorial comment on 'influence of age, disease onset and ApoE4 on visual medial temporal lobe atrophy cut‐offs'. Journal of Internal Medicine 2014;275:331‐3. - PubMed
Van der Flier 2014
    1. Flier WM, Pijnenburg YA, Prins N, Lemstra AW, Bouwman FH, Teunissen CE, et al. Optimizing patient care and research: the Amsterdam dementia cohort. Journal of Alzheimer's Disease 2014;41:313‐27. - PubMed
Vernooij 2019
    1. Vernooij MW, Pizzini FB, Schmidt R, Smits M, Yousry TA, Bargallo N, et al. Dementia imaging in clinical practice: a European‐wide survey of 193 centres and conclusions by the ESNR working group. Neuroradiology 2019;61(6):633‐42. - PMC - PubMed
Visser 2008
    1. Visser PJ, Verhey FR, Boada M, Bullock R, Deyn PP, Frisoni GB, et al. Development of screening guidelines and clinical criteria for predementia Alzheimer's disease. The DESCRIPA study. Neuroepidemiology 2008;30(4):254‐65. - PMC - PubMed
Whiting 2004
    1. Whiting P, Rutjes AW, Reitsma JB, Glas AS, Bossuyt PM, Kleijnen J. Sources of variation and bias in studies of diagnostic accuracy: a systematic review. Annals of Internal Medicine 2004;140:189‐202. - PubMed
Whiting 2011
    1. Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. the QUADAS‐2 Group. QUADAS‐2: a revised tool for the quality assessment of diagnostic accuracy studies. Annals of Internal Medicine 2011;155(8):529‐36. - PubMed
Winblad 2004
    1. Winblad B, Palmer K, Kivipelto M, Jelic V, Fratiglioni L, Wahlund L‐O, et al. Mild cognitive impairment – beyond controversies, towards a consensus: report of the international working group on mild cognitive impairment. Journal of Internal Medicine 2004;256:240‐6. - PubMed
Yaffe 2006
    1. Yaffe K, Petersen RC, Lindquist K, Kramer J, Miller B. Subtype of mild cognitive impairment and progression to dementia and death. Dementia and Geriatric Cognitive Disorders 2006;22:312‐9. - PubMed
Youden 1950
    1. Youden WJ. An index for rating diagnostic tests. Cancer 1950;3:32‐5. - PubMed
Yue 1997
    1. Yue NC, Arnold AM, Longstreth WT Jr, Elster AD, Jungreis CA, O'Leary DH. Sulcal, ventricular, and white matter changes at MR imaging in the aging brain: data from the cardiovascular health study. Radiology 1997;202(1):33‐9. [PUBMED: 8988189] - PubMed

References to other published versions of this review

Filippini 2012
    1. Filippini G, Casazza G, Bellatorre AG, Lista C, Duca P, Beecher D, et al. The role of MRI in the early diagnosis of Alzheimer’s disease or other dementias in persons with mild cognitive impairment (MCI). Cochrane Database of Systematic Reviews 2012, Issue 2. [DOI: 10.1002/14651858.CD009628] - DOI

Publication types

MeSH terms