Cooling and immunomodulation for treating hypoxic-ischemic brain injury
- PMID: 32119180
- DOI: 10.1111/ped.14215
Cooling and immunomodulation for treating hypoxic-ischemic brain injury
Abstract
Therapeutic hypothermia is now well established to partially reduce disability in term and near-term infants with moderate-severe hypoxic-ischemic encephalopathy. Preclinical and clinical studies have confirmed that current protocols for therapeutic hypothermia are near optimal. The challenge is now to identify complementary therapies that can further improve outcomes, in combination with therapeutic hypothermia. Overall, anti-excitatory and anti-apoptotic agents have shown variable or even no benefit in combination with hypothermia, suggesting overlapping mechanisms of neuroprotection. Inflammation appears to play a critical role in the pathogenesis of injury in the neonatal brain, and thus, there is potential for drugs with immunomodulatory properties that target inflammation to be used as a therapy in neonates. In this review, we examine the evidence for neuroprotection with immunomodulation after hypoxia-ischemia. For example, stem cell therapy can reduce inflammation, increase cell survival, and promote cell maturation and repair. There are also encouraging preclinical data from small animals suggesting that stem cell therapy can augment hypothermic neuroprotection. However, there is conflicting evidence, and rigorous testing in translational animal models is now needed.
Keywords: hypoxia-ischemia; inflammation; neuroprotection; therapeutic hypothermia; toll-like receptors.
© 2020 Japan Pediatric Society.
Comment in
-
Neuroprotection by cooling with immunomodulation: One Step further.Pediatr Int. 2020 Jul;62(7):769. doi: 10.1111/ped.14314. Pediatr Int. 2020. PMID: 32705781 No abstract available.
Similar articles
-
Combination treatments with therapeutic hypothermia for hypoxic-ischemic neuroprotection.Dev Med Child Neurol. 2020 Oct;62(10):1131-1137. doi: 10.1111/dmcn.14610. Epub 2020 Jul 2. Dev Med Child Neurol. 2020. PMID: 32614467 Review.
-
Therapeutic Hypothermia in Neonatal Hypoxic-Ischemic Encephalopathy.Curr Neurol Neurosci Rep. 2019 Jan 14;19(2):2. doi: 10.1007/s11910-019-0916-0. Curr Neurol Neurosci Rep. 2019. PMID: 30637551 Review.
-
Intervention strategies for neonatal hypoxic-ischemic cerebral injury.Clin Ther. 2006 Sep;28(9):1353-65. doi: 10.1016/j.clinthera.2006.09.005. Clin Ther. 2006. PMID: 17062309 Review.
-
Mechanisms of hypothermic neuroprotection.Clin Perinatol. 2014 Mar;41(1):161-75. doi: 10.1016/j.clp.2013.10.005. Epub 2013 Dec 12. Clin Perinatol. 2014. PMID: 24524453 Review.
-
A working model for hypothermic neuroprotection.J Physiol. 2018 Dec;596(23):5641-5654. doi: 10.1113/JP274928. Epub 2018 May 24. J Physiol. 2018. PMID: 29660115 Free PMC article. Review.
Cited by
-
Optimization of an Intranasal Route for the Delivery of Human Neural Stem Cells to Treat a Neonatal Hypoxic-Ischemic Brain Injury Rat Model.Neuropsychiatr Dis Treat. 2022 Feb 23;18:413-426. doi: 10.2147/NDT.S350586. eCollection 2022. Neuropsychiatr Dis Treat. 2022. PMID: 35495583 Free PMC article.
-
GDF15 regulated by HDAC2 exerts suppressive effects on oxygen-glucose deprivation/reoxygenation-induced neuronal cell pyroptosis via the NLRP3 inflammasome.Toxicol Res (Camb). 2024 Jul 25;13(4):tfae112. doi: 10.1093/toxres/tfae112. eCollection 2024 Aug. Toxicol Res (Camb). 2024. PMID: 39070057 Free PMC article.
-
Role of Microglial Modulation in Therapies for Perinatal Brain Injuries Leading to Neurodevelopmental Disorders.Adv Neurobiol. 2024;37:591-606. doi: 10.1007/978-3-031-55529-9_33. Adv Neurobiol. 2024. PMID: 39207715 Review.
-
The Impact of the Histone Deacetylase Inhibitor-Sodium Butyrate on Complement-Mediated Synapse Loss in a Rat Model of Neonatal Hypoxia-Ischemia.Mol Neurobiol. 2025 Apr;62(4):5216-5233. doi: 10.1007/s12035-024-04591-w. Epub 2024 Nov 12. Mol Neurobiol. 2025. PMID: 39531190 Free PMC article.
-
Paradigm shifts in neonatal hypoxic-ischemic encephalopathy therapeutics: a four-decade bibliometric exploration of emerging therapeutic dimensions (1985-2024).Front Pediatr. 2025 Jul 28;13:1611345. doi: 10.3389/fped.2025.1611345. eCollection 2025. Front Pediatr. 2025. PMID: 40791807 Free PMC article.
References
-
- Lundgren C, Brudin L, Wanby AS, Blomberg M. Ante- and intrapartum risk factors for neonatal hypoxic ischemic encephalopathy. J. Matern. Fetal Neonatal Med. 2018; 31(12): 1595-1601.
-
- Marlow N, Rose AS, Rands CE, Draper ES. Neuropsychological and educational problems at school age associated with neonatal encephalopathy. Arch. Dis. Child. Fetal Neonatal Ed. 2005; 90: F380-7.
-
- Jacobs SE, Berg M, Hunt R, Tarnow-Mordi WO, Inder TE, Davis PG. Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database Syst. Rev 2013; 1: CD003311.
-
- Rutherford M, Malamateniou C, McGuinness A, Allsop J, Biarge MM, Counsell S. Magnetic resonance imaging in hypoxic-ischaemic encephalopathy. Early Hum. Dev. 2010; 86: 351-60.
-
- Edwards AD, Brocklehurst P, Gunn AJ et al. Neurological outcomes at 18 months of age after moderate hypothermia for perinatal hypoxic ischaemic encephalopathy: Synthesis and meta-analysis of trial data. BMJ 2010; 340: c363.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources