Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jun:328:113264.
doi: 10.1016/j.expneurol.2020.113264. Epub 2020 Feb 29.

Transcranial direct current stimulation alleviates seizure severity in kainic acid-induced status epilepticus rats

Affiliations

Transcranial direct current stimulation alleviates seizure severity in kainic acid-induced status epilepticus rats

Yi-Jen Wu et al. Exp Neurol. 2020 Jun.

Abstract

Status epilepticus (SE) is a state of prolonged and repeated seizures that can lead to permanent brain damage or life-threatening conditions. Transcranial direct current stimulation (tDCS) non-invasively provides a polarity-specific electric current to modulate brain excitability. Little is known about the therapeutic potential of tDCS in SE. Here, we aim to determine the tDCS effects on seizure severity, EEG and post-SE consequences in rats with kainic acid (KA)-induced SE. Rats were subjected to cathodal tDCS or sham stimulation over the dorsal hippocampus for 5 days. KA was intraperitoneally injected to induce SE. We used continuous video-EEG recording to monitor seizure activity, immunostaining and Timm staining to evaluate neuron counts and mossy fiber sprouting, and ELISA for Brain-derived neurotrophic factor (BDNF) protein measurement. Two featured EEG patterns, gamma ranged high-frequency polyspikes and low-frequency spike-and-wave complexes, were identified in the hippocampal CA1 of KA-induced SE rats. tDCS elicited a significant decrease in severe seizures of Racine stages 4-5 in KA-induced SE rats. tDCS-treated rats manifested diminished high-frequency oscillation during SE, decreased chronic spontaneous spike activities and mossy fiber sproutings compared to sham. tDCS-treated rats also exhibited significantly lower hippocampal BDNF protein levels than sham immediately and 4 weeks after SE. A positive correlation between the hippocampal BDNF level and the seizure severity of SE was found. Altogether, our results show that repeated cathodal tDCS can mitigate seizure severity, alter ictal EEG pattern and reduce the chronic adverse consequences in KA-induced SE rats, supporting the therapeutic potential of tDCS in severe prolonged epileptic seizures.

Keywords: Brain-derived neurotrophic factor; Electroencephalography; Mossy fiber sprouting; Seizure; Status epilepticus; Transcranial direct current stimulation.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare no conflict of interests.

Similar articles

Cited by

Publication types

LinkOut - more resources