The First Plastid Genome of the Holoparasitic Genus Prosopanche (Hydnoraceae)
- PMID: 32121567
- PMCID: PMC7154897
- DOI: 10.3390/plants9030306
The First Plastid Genome of the Holoparasitic Genus Prosopanche (Hydnoraceae)
Abstract
Plastomes of parasitic and mycoheterotrophic plants show different degrees of reduction depending on the plants' level of heterotrophy and host dependence in comparison to photoautotrophic sister species, and the amount of time since heterotrophic dependence was established. In all but the most recent heterotrophic lineages, this reduction involves substantial decrease in genome size and gene content and sometimes alterations of genome structure. Here, we present the first plastid genome of the holoparasitic genus Prosopanche, which shows clear signs of functionality. The plastome of Prosopanche americana has a length of 28,191 bp and contains only 24 unique genes, i.e., 14 ribosomal protein genes, four ribosomal RNA genes, five genes coding for tRNAs and three genes with other or unknown function (accD, ycf1, ycf2). The inverted repeat has been lost. Despite the split of Prosopanche and Hydnora about 54 MYA ago, the level of genome reduction is strikingly congruent between the two holoparasites although highly dissimilar nucleotide sequences are observed. Our results lead to two possible evolutionary scenarios that will be tested in the future with a larger sampling: 1) a Hydnoraceae plastome, similar to those of Hydnora and Prosopanche today, existed already in the most recent common ancestor and has not changed much with respect to gene content and structure, or 2) the genome similarities we observe today are the result of two independent evolutionary trajectories leading to almost the same endpoint. The first hypothesis would be most parsimonious whereas the second would point to taxon dependent essential gene sets for plants released from photosynthetic constraints.
Keywords: Hydnora; Hydnoraceae; Piperales; Prosopanche; holoparasite; parasitic plants; plastid genome.
Conflict of interest statement
The authors declare no conflict of interest.
Figures







Similar articles
-
Structural Plastome Evolution in Holoparasitic Hydnoraceae with Special Focus on Inverted and Direct Repeats.Genome Biol Evol. 2022 May 31;14(6):evac077. doi: 10.1093/gbe/evac077. Genome Biol Evol. 2022. PMID: 35660863 Free PMC article.
-
Detecting and Characterizing the Highly Divergent Plastid Genome of the Nonphotosynthetic Parasitic Plant Hydnora visseri (Hydnoraceae).Genome Biol Evol. 2016 Jan 6;8(2):345-63. doi: 10.1093/gbe/evv256. Genome Biol Evol. 2016. PMID: 26739167 Free PMC article.
-
Diverging repeatomes in holoparasitic Hydnoraceae uncover a playground of genome evolution.New Phytol. 2025 Aug;247(3):1520-1537. doi: 10.1111/nph.70280. Epub 2025 Jun 14. New Phytol. 2025. PMID: 40515553 Free PMC article.
-
Plastomes on the edge: the evolutionary breakdown of mycoheterotroph plastid genomes.New Phytol. 2017 Apr;214(1):48-55. doi: 10.1111/nph.14398. Epub 2017 Jan 9. New Phytol. 2017. PMID: 28067952 Review.
-
The ins and outs of editing and splicing of plastid RNAs: lessons from parasitic plants.N Biotechnol. 2010 Jul 31;27(3):256-66. doi: 10.1016/j.nbt.2010.02.020. Epub 2010 Mar 3. N Biotechnol. 2010. PMID: 20206308 Review.
Cited by
-
Genomic reconfiguration in parasitic plants involves considerable gene losses alongside global genome size inflation and gene births.Plant Physiol. 2021 Jul 6;186(3):1412-1423. doi: 10.1093/plphys/kiab192. Plant Physiol. 2021. PMID: 33909907 Free PMC article.
-
Understanding the Ethnobotany, Chemistry, Pharmacology, and Distribution of Genus Hydnora (Aristolochiaceae).Plants (Basel). 2021 Mar 5;10(3):494. doi: 10.3390/plants10030494. Plants (Basel). 2021. PMID: 33807757 Free PMC article. Review.
-
Discordant Phylogenomic Placement of Hydnoraceae and Lactoridaceae Within Piperales Using Data From All Three Genomes.Front Plant Sci. 2021 Apr 12;12:642598. doi: 10.3389/fpls.2021.642598. eCollection 2021. Front Plant Sci. 2021. PMID: 33912209 Free PMC article.
-
Phylogenetic and comparative analyses of Hydnora abyssinica plastomes provide evidence for hidden diversity within Hydnoraceae.BMC Ecol Evol. 2023 Jul 18;23(1):34. doi: 10.1186/s12862-023-02142-w. BMC Ecol Evol. 2023. PMID: 37464315 Free PMC article.
-
Structural Plastome Evolution in Holoparasitic Hydnoraceae with Special Focus on Inverted and Direct Repeats.Genome Biol Evol. 2022 May 31;14(6):evac077. doi: 10.1093/gbe/evac077. Genome Biol Evol. 2022. PMID: 35660863 Free PMC article.
References
-
- Ohyama K., Fukuzawa H., Kohchi T., Shirai H., Sano T., Sano S., Umesono K., Shiki Y., Takeuchi Y., Chang Z., et al. Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature. 1986;322:572. doi: 10.1038/322572a0. - DOI
-
- Wicke S., Müller K.F., de Pamphilis C.W., Quandt D., Wickett N.J., Zhang Y., Renner S.S., Schneeweiss G.M. Mechanisms of functional and physical genome reduction in photosynthetic and nonphotosynthetic parasitic plants of the broomrape family. Plant Cell. 2013;25:3711–3725. doi: 10.1105/tpc.113.113373. - DOI - PMC - PubMed
-
- Wicke S., Naumann J. Advances in Botanical Research. Volume 85. Academic Press; Cambridge, MA, USA: 2018. Molecular evolution of plastid genomes in parasitic flowering plants; pp. 315–347.
LinkOut - more resources
Full Text Sources