Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jan 20;28(2):860-874.
doi: 10.1364/OE.378194.

Mie-type GaAs nanopillar array resonators for negative electron affinity photocathodes

Free article

Mie-type GaAs nanopillar array resonators for negative electron affinity photocathodes

Xincun Peng et al. Opt Express. .
Free article

Abstract

This paper presents modeling results of Mie-type GaAs nanopillar array resonant structures and the design of negative electron affinity photocathodes based on Spicer's three-step model. For direct-bandgap GaAs with high intrinsic absorption coefficient in the 500 ∼ 850 nm spectral range, photoelectrons were found to be highly localized inside the nanopillars near the top and side surfaces where electrons can be efficiently transported and emitted into vacuum, and the light reflectance can be reduced to ∼1% level at resonance wavelengths. Predictions of spectrally resolved photoemission indicate that these nanophotonics resonators, when properly optimized, can increase the photo-electron emission quantum efficiency at resonance wavelengths to levels limited only by the surface-electron escape probability, significantly outperforming traditional flat wafer photocathodes. Ultrafast photoelectric response is also expected from these nanostructured photocathodes due to the much shorter photoelectron transport distance in nanopillars compared to flat wafers. Given these unique optoelectronic properties, GaAs nanophotonic resonance structured photocathodes represent a very promising alternative to photocathodes with flat surfaces that are widely used in many applications today.

PubMed Disclaimer

LinkOut - more resources