Selective modification of alkyne-linked peptides and proteins by cyclometalated gold(III) (C^N) complex-mediated alkynylation
- PMID: 32122753
- DOI: 10.1016/j.bmc.2020.115375
Selective modification of alkyne-linked peptides and proteins by cyclometalated gold(III) (C^N) complex-mediated alkynylation
Abstract
Alkyne is a useful functionality incorporated in proteins for site-selective bioconjugation reactions. Although effective bioconjugation reactions such as copper(I)-catalyzed and/or copper-free 1,3-dipolar cycloadditions of alkynes and azides are the most common approaches, the development of new alkyne-based bioconjugation reactions is still an ongoing interest in chemical biology. In this work, a new approach has been developed for selective modification of alkyne-linked peptides and proteins through the formation of arylacetylenes by a cross-coupling reaction of 6-membered ring cyclometalated gold(III) (C^N) complexes (HC^N = 2-arylpyridines) with terminal alkynes. Screening of the reaction conditions with a series of cyclometalated gold(III) complexes with phenylacetylene gave an excellent yield (up to 82%) by conducting the reaction in slightly alkaline aqueous conditions. The reaction scope was expanded to various alkynes, including alkyne-linked peptides to achieve up to >99% conversion. Using fluorescent dansyl (1l) and BODIPY (1m)-linked gold(III) complexes, alkyne-linked lysozyme has been selectively modified.
Keywords: Alkynylation; Bioconjugation reaction; Gold complexes; Protein modification.
Copyright © 2020 Elsevier Ltd. All rights reserved.
Conflict of interest statement
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources