Sequential Glycosylation of Proteins with Substrate-Specific N-Glycosyltransferases
- PMID: 32123732
- PMCID: PMC7047269
- DOI: 10.1021/acscentsci.9b00021
Sequential Glycosylation of Proteins with Substrate-Specific N-Glycosyltransferases
Abstract
Protein glycosylation is a common post-translational modification that influences the functions and properties of proteins. Despite advances in methods to produce defined glycoproteins by chemoenzymatic elaboration of monosaccharides, the understanding and engineering of glycoproteins remain challenging, in part, due to the difficulty of site-specifically controlling glycosylation at each of several positions within a protein. Here, we address this limitation by discovering and exploiting the unique, conditionally orthogonal peptide acceptor specificities of N-glycosyltransferases (NGTs). We used cell-free protein synthesis and mass spectrometry of self-assembled monolayers to rapidly screen 41 putative NGTs and rigorously characterize the unique acceptor sequence preferences of four NGT variants using 1254 acceptor peptides and 8306 reaction conditions. We then used the optimized NGT-acceptor sequence pairs to sequentially install monosaccharides at four sites within one target protein. This strategy to site-specifically control the installation of N-linked monosaccharides for elaboration to a variety of functional N-glycans overcomes a major limitation in synthesizing defined glycoproteins for research and therapeutic applications.
Copyright © 2020 American Chemical Society.
Conflict of interest statement
The authors declare no competing financial interest.
Figures





Similar articles
-
Using High-Throughput Experiments To Screen N-Glycosyltransferases with Altered Specificities.ACS Synth Biol. 2024 Apr 19;13(4):1290-1302. doi: 10.1021/acssynbio.3c00769. Epub 2024 Mar 25. ACS Synth Biol. 2024. PMID: 38526141
-
Design of glycosylation sites by rapid synthesis and analysis of glycosyltransferases.Nat Chem Biol. 2018 Jun;14(6):627-635. doi: 10.1038/s41589-018-0051-2. Epub 2018 May 7. Nat Chem Biol. 2018. PMID: 29736039
-
Probing peptide substrate specificities of N-glycosyltranferase isoforms from different bacterial species.Carbohydr Res. 2019 Feb 1;473:82-87. doi: 10.1016/j.carres.2018.12.016. Epub 2018 Dec 30. Carbohydr Res. 2019. PMID: 30648623
-
Protein-specific glycosyltransferases: how and why they do it!FASEB J. 1994 Oct;8(13):1019-25. doi: 10.1096/fasebj.8.13.7926366. FASEB J. 1994. PMID: 7926366 Review.
-
O-glycosylation of the mucin type.Biol Chem. 2001 Feb;382(2):143-9. doi: 10.1515/BC.2001.022. Biol Chem. 2001. PMID: 11308013 Review.
Cited by
-
Synthetic Glycobiology: Parts, Systems, and Applications.ACS Synth Biol. 2020 Jul 17;9(7):1534-1562. doi: 10.1021/acssynbio.0c00210. Epub 2020 Jun 30. ACS Synth Biol. 2020. PMID: 32526139 Free PMC article. Review.
-
Characterizing and engineering post-translational modifications with high-throughput cell-free expression.Nat Commun. 2025 Aug 5;16(1):7215. doi: 10.1038/s41467-025-60526-6. Nat Commun. 2025. PMID: 40764296 Free PMC article.
-
Carbohydrate-active enzyme (CAZyme) discovery and engineering via (Ultra)high-throughput screening.RSC Chem Biol. 2024 May 23;5(7):595-616. doi: 10.1039/d4cb00024b. eCollection 2024 Jul 3. RSC Chem Biol. 2024. PMID: 38966674 Free PMC article. Review.
-
A Cell-Free Protein Synthesis Platform to Produce a Clinically Relevant Allergen Panel.ACS Synth Biol. 2023 Aug 18;12(8):2252-2261. doi: 10.1021/acssynbio.3c00269. Epub 2023 Aug 8. ACS Synth Biol. 2023. PMID: 37553068 Free PMC article.
-
Cell-Free Gene Expression: Methods and Applications.Chem Rev. 2025 Jan 8;125(1):91-149. doi: 10.1021/acs.chemrev.4c00116. Epub 2024 Dec 19. Chem Rev. 2025. PMID: 39700225 Free PMC article. Review.
References
-
- Elliott S.; Lorenzini T.; Asher S.; Aoki K.; Brankow D.; Buck L.; Busse L.; Chang D.; Fuller J.; Grant J.; Hernday N.; Hokum M.; Hu S.; Knudten A.; Levin N.; Komorowski R.; Martin F.; Navarro R.; Osslund T.; Rogers G.; Rogers N.; Trail G.; Egrie J. Enhancement of therapeutic protein in vivo activities through glycoengineering. Nat. Biotechnol. 2003, 21 (4), 414–421. 10.1038/nbt799. - DOI - PubMed
-
- Lin C.-W.; Tsai M.-H.; Li S.-T.; Tsai T.-I.; Chu K.-C.; Liu Y.-C.; Lai M.-Y.; Wu C.-Y.; Tseng Y.-C.; Shivatare S. S.; Wang C.-H.; Chao P.; Wang S.-Y.; Shih H.-W.; Zeng Y.-F.; You T.-H.; Liao J.-Y.; Tu Y.-C.; Lin Y.-S.; Chuang H.-Y.; Chen C.-L.; Tsai C.-S.; Huang C.-C.; Lin N.-H.; Ma C.; Wu C.-Y.; Wong C.-H. A common glycan structure on immunoglobulin g for enhancement of effector functions. Proc. Natl. Acad. Sci. U. S. A. 2015, 112 (34), 10611–10616. 10.1073/pnas.1513456112. - DOI - PMC - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources