Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Mar 3;21(1):55.
doi: 10.1186/s13059-020-01964-x.

Longitudinal survey of microbiome associated with particulate matter in a megacity

Affiliations

Longitudinal survey of microbiome associated with particulate matter in a megacity

Nan Qin et al. Genome Biol. .

Abstract

Background: While the physical and chemical properties of airborne particulate matter (PM) have been extensively studied, their associated microbiome remains largely unexplored. Here, we performed a longitudinal metagenomic survey of 106 samples of airborne PM2.5 and PM10 in Beijing over a period of 6 months in 2012 and 2013, including those from several historically severe smog events.

Results: We observed that the microbiome composition and functional potential were conserved between PM2.5 and PM10, although considerable temporal variations existed. Among the airborne microorganisms, Propionibacterium acnes, Escherichia coli, Acinetobacter lwoffii, Lactobacillus amylovorus, and Lactobacillus reuteri dominated, along with several viral species. We further identified an extensive repertoire of genes involved in antibiotic resistance and detoxification, including transporters, transpeptidases, and thioredoxins. Sample stratification based on Air Quality Index (AQI) demonstrated that many microbial species, including those associated with human, dog, and mouse feces, exhibit AQI-dependent incidence dynamics. The phylogenetic and functional diversity of air microbiome is comparable to those of soil and water environments, as its composition likely derives from a wide variety of sources.

Conclusions: Airborne particulate matter accommodates rich and dynamic microbial communities, including a range of microbial elements that are associated with potential health consequences.

Keywords: Air pollution; Archaea; Bacteria; Eukaryotes; Microbiome; Particulate matter (PM); Viruses.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Taxonomic and functional characteristics of air microbiota. a Temporal distribution of daily PM concentration variations during the sampling period. b Relative abundance of different domains in air microbiome. c Taxonomic Shannon index of the PM2.5 (red) and PM10 (blue) samples. d Gene number of the PM2.5 (red) and PM10 (blue) samples. e Temporal distribution of relative abundance from the top 10 most abundant phyla across the sampling period of the PM2.5 (left) and PM10 (right) samples. Asterisks denote Wilcoxon signed-rank test results; P values were adjusted using Benjamini and Hochberg false discovery rate (FDR) (**adjusted P < 0.01)
Fig. 2
Fig. 2
Characteristics of drug resistance and detoxification genes in PM samples. a Box plot showing the numbers of antibiotic resistance gene types in PM2.5 (red) and PM10 (blue) samples. b Box plot showing the RPKM values of total antibiotic resistance genes in PM2.5 (red) and PM10 (blue) samples. c, d Box plots showing the top 10 most abundant antibiotic resistance targets (c) and types (d) across PM2.5 (red) and PM10 (blue) samples. Labels 1–10 represent TEM beta-lactamase, major facilitator superfamily (MFS) antibiotic efflux pump, resistance-nodulation-cell division (RND) antibiotic efflux pump, Erm 23S ribosomal RNA methyltransferase, tetracycline-resistant ribosomal protection protein, lincosamide nucleotidyltransferase (LNU), sulfonamide resistant sul, ABC-F ATP-binding cassette ribosomal protection protein, chloramphenicol acetyltransferase (CAT), and ANT (6), respectively. e Bar plot showing the numbers of detoxification genes in PM2.5 (red) and PM10 (blue) samples. f Box plot showing the relative abundance of detoxification genes across PM2.5 (red) and PM10 (blue) samples. g, h Box plot showing the number of antibiotic resistance gene types (g) and RPKM values of the total antibiotic resistance gene types (h) across different environments. i, j Box plot showing the number of detoxification gene types (i) and RPKM values of the total detoxification gene types (j) across different environments. Asterisks denote Wilcoxon signed-rank test results; P values were adjusted using Benjamini and Hochberg false discovery rate (FDR) (*adjusted P < 0.05; **adjusted P < 0.01; ***adjusted P < 0.001)
Fig. 3
Fig. 3
Comparative analysis for five different classes of PM2.5 and PM10 samples. a Stratification of classes I–V for PM2.5 and PM10 samples. b, c PCoA analysis based on the Bray-Curtis distance metric of species abundance in PM2.5 (b) and PM10 (c) samples. dg Taxonomic species number (d, e) and taxonomic Shannon index (f, g) for PM2.5 (d, f = red) and PM10 (e, g = blue) samples, respectively. hk Gene number (h, i) and gene Shannon index (j, k) for PM2.5 (red) and PM10 (blue) samples, respectively. Asterisks denote Wilcoxon rank-sum test results (**P < 0.05; ***P < 0.01). l Pairwise Spearman’s correlation matrix of the portion of airborne microorganisms associated with different environmental sources correlating with PM concentrations (*adjusted P < 0.05; **adjusted P < 0.01)

References

    1. Zhang RY, Wang GH, Guo S, Zarnora ML, Ying Q, Lin Y, Wang WG, Hu M, Wang Y. Formation of urban fine particulate matter. Chem Rev. 2015;115:3803–3855. doi: 10.1021/acs.chemrev.5b00067. - DOI - PubMed
    1. Zhang Q, He K, Huo H. Policy: cleaning China’s air. Nature. 2012;484:161–162. doi: 10.1038/484161a. - DOI - PubMed
    1. Lee JY, Park EH, Lee S, Ko G, Honda Y, Hashizume M, Deng F, Yi S-M, Kim H. Airborne bacterial communities in three east asian cities of China, South Korea, and Japan. Sci Rep. 2017;7:5545. doi: 10.1038/s41598-017-05862-4. - DOI - PMC - PubMed
    1. Cleaner urban air tomorrow? [Editorial]. Nature Geosci. 2017;10:69.
    1. Kim K-H, Kabir E, Kabir S. A review on the human health impact of airborne particulate matter. Environ Int. 2015;74:136–143. doi: 10.1016/j.envint.2014.10.005. - DOI - PubMed

Publication types