Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Mar 3;8(1):27.
doi: 10.1186/s40168-020-00799-9.

Rhizosphere protists are key determinants of plant health

Affiliations

Rhizosphere protists are key determinants of plant health

Wu Xiong et al. Microbiome. .

Abstract

Background: Plant health is intimately influenced by the rhizosphere microbiome, a complex assembly of organisms that changes markedly across plant growth. However, most rhizosphere microbiome research has focused on fractions of this microbiome, particularly bacteria and fungi. It remains unknown how other microbial components, especially key microbiome predators-protists-are linked to plant health. Here, we investigated the holistic rhizosphere microbiome including bacteria, microbial eukaryotes (fungi and protists), as well as functional microbial metabolism genes. We investigated these communities and functional genes throughout the growth of tomato plants that either developed disease symptoms or remained healthy under field conditions.

Results: We found that pathogen dynamics across plant growth is best predicted by protists. More specifically, communities of microbial-feeding phagotrophic protists differed between later healthy and diseased plants at plant establishment. The relative abundance of these phagotrophs negatively correlated with pathogen abundance across plant growth, suggesting that predator-prey interactions influence pathogen performance. Furthermore, phagotrophic protists likely shifted bacterial functioning by enhancing pathogen-suppressing secondary metabolite genes involved in mitigating pathogen success.

Conclusions: We illustrate the importance of protists as top-down controllers of microbiome functioning linked to plant health. We propose that a holistic microbiome perspective, including bacteria and protists, provides the optimal next step in predicting plant performance. Video Abstract.

Keywords: Pathogen of Ralstonia solanacearum; Plant health; Predator-prey interactions; Protists; Rhizosphere; Secondary metabolite genes.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
The relative importance of the main microbial parameters in predicting pathogenic Ralstonia solanacearum density across plant growth with the combined datasets including healthy and diseased plants (a), the healthy plant dataset (b), and the diseased plant dataset (c). Diversity (Shannon index) and structure (PCoA2) of bacterial, fungal, and protistan communities were selected as the six main microbial predictors (Fig. S2). Asterisk means P < 0.05, two asterisks mean P < 0.01, and three asterisks mean P < 0.001 (statistical significance was calculated by multiple regression using linear models between the microbial predictors and R. solanacearum)
Fig. 2
Fig. 2
Community structure of protistan taxonomic and functional groups explaining differences between diseased and healthy plants at plant establishment (week 0) (a). Community structure of phagotrophic protists (b) and indicator protistan OTUs (c) in diseased and healthy plants at plant establishment, and networks of the functional groups of protistan OTUs directly associated with the R. solanacearum pathogen in healthy and diseased plants at plant establishment (d). Correlations between the relative abundance of phagotrophic protists and R. solanacearum in diseased and healthy plants across plant growth (e). In panel a, only abundant taxonomic and functional groups of protists were selected (average relative abundance over 1%). In panel a and b, asterisk means P < 0.05. In panel c, protistan OTUs with LDA score > 2.0 are indicators for healthy plants, while protistan OTUs with LDA score < − 2.0 are belonging to diseased plants. In panel d, blue lines indicate positive, and red lines indicate negative correlations. In panel e, the solid line shows a significant (P < 0.05) correlation, and the dashed line shows a non-significant (P > 0.05) correlation
Fig. 3
Fig. 3
Relative importance of the eight metabolism gene categories in predicting R. solanacearum density across plant growth in the combined datasets including healthy and diseased plants (a). Changes in relative abundance of metabolism Q genes (secondary metabolite biosynthesis, transport, and catabolism genes) in diseased and healthy plants at week 0 and week 5 (b). Relative abundance of phagotrophic protists in diseased and healthy plants at week 0 and week 5 (c). Relative abundance of Bacillus OTUs in diseased and healthy plants at week 0 and week 5 (d). Abundance of R. solanacearum in diseased and healthy plants at week 0 and week 5 (e). Co-occurrence networks between abundant phagotrophic protistan OTUs, bacterial OTUs, and metabolism Q genes for healthy and diseased plants across plant growth (f). In panel a, asterisk means P < 0.05 and three asterisks mean P < 0.001 (statistical significance was calculated by multiple regression using linear models between metabolism genes and R. solanacearum pathogen). In panel b, c, d, and e, “ns” means non-significant, asterisk means P < 0.05 and two asterisks mean P < 0.01 under student’s t test (n = 4 for metabolism Q genes, n = 8 for phagotrophic protists, Bacillus and R. solanacearum). In panel d, relative abundance of Bacillus OTUs combines the two Bacillus OTUs from the bacterial OTU table. In panel f, blue lines indicate positive, and red lines indicate negative correlations; detailed annotation of bacterial OTUs and metabolism Q genes are provided in Table S5

References

    1. Dean R. Kan J a. LV, Pretorius ZA, Hammond-Kosack KE, Pietro AD, Spanu PD, et al. The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol. 2012;13:414–430. doi: 10.1111/j.1364-3703.2011.00783.x. - DOI - PMC - PubMed
    1. Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, et al. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol. 2012;13:614–629. doi: 10.1111/j.1364-3703.2012.00804.x. - DOI - PMC - PubMed
    1. Berendsen RL, Pieterse CMJ, Bakker PAHM. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012;17:478–486. doi: 10.1016/j.tplants.2012.04.001. - DOI - PubMed
    1. Mendes R, Garbeva P, Raaijmakers JM. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev. 2013;37:634–663. doi: 10.1111/1574-6976.12028. - DOI - PubMed
    1. Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH. Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol. 2013;11:789–799. doi: 10.1038/nrmicro3109. - DOI - PubMed

Publication types

Substances