Egocentric boundary vector tuning of the retrosplenial cortex
- PMID: 32128423
- PMCID: PMC7035004
- DOI: 10.1126/sciadv.aaz2322
Egocentric boundary vector tuning of the retrosplenial cortex
Abstract
The retrosplenial cortex is reciprocally connected with multiple structures implicated in spatial cognition, and damage to the region itself produces numerous spatial impairments. Here, we sought to characterize spatial correlates of neurons within the region during free exploration in two-dimensional environments. We report that a large percentage of retrosplenial cortex neurons have spatial receptive fields that are active when environmental boundaries are positioned at a specific orientation and distance relative to the animal itself. We demonstrate that this vector-based location signal is encoded in egocentric coordinates, is localized to the dysgranular retrosplenial subregion, is independent of self-motion, and is context invariant. Further, we identify a subpopulation of neurons with this response property that are synchronized with the hippocampal theta oscillation. Accordingly, the current work identifies a robust egocentric spatial code in retrosplenial cortex that can facilitate spatial coordinate system transformations and support the anchoring, generation, and utilization of allocentric representations.
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
Figures






Similar articles
-
Gated transformations from egocentric to allocentric reference frames involving retrosplenial cortex, entorhinal cortex, and hippocampus.Hippocampus. 2023 May;33(5):465-487. doi: 10.1002/hipo.23513. Epub 2023 Mar 1. Hippocampus. 2023. PMID: 36861201 Free PMC article. Review.
-
Entorhinal-retrosplenial circuits for allocentric-egocentric transformation of boundary coding.Elife. 2020 Nov 3;9:e59816. doi: 10.7554/eLife.59816. Elife. 2020. PMID: 33138915 Free PMC article.
-
Learning the Vector Coding of Egocentric Boundary Cells from Visual Data.J Neurosci. 2023 Jul 12;43(28):5180-5190. doi: 10.1523/JNEUROSCI.1071-22.2023. Epub 2023 Jun 7. J Neurosci. 2023. PMID: 37286350 Free PMC article.
-
Egocentric coding of external items in the lateral entorhinal cortex.Science. 2018 Nov 23;362(6417):945-949. doi: 10.1126/science.aau4940. Science. 2018. PMID: 30467169 Free PMC article.
-
The retrosplenial-parietal network and reference frame coordination for spatial navigation.Behav Neurosci. 2018 Oct;132(5):416-429. doi: 10.1037/bne0000260. Epub 2018 Aug 9. Behav Neurosci. 2018. PMID: 30091619 Free PMC article. Review.
Cited by
-
Unpacking the navigation toolbox: insights from comparative cognition.Proc Biol Sci. 2024 Feb 14;291(2016):20231304. doi: 10.1098/rspb.2023.1304. Epub 2024 Feb 7. Proc Biol Sci. 2024. PMID: 38320615 Free PMC article. Review.
-
Hippocampal spatial view cells for memory and navigation, and their underlying connectivity in humans.Hippocampus. 2023 May;33(5):533-572. doi: 10.1002/hipo.23467. Epub 2022 Sep 7. Hippocampus. 2023. PMID: 36070199 Free PMC article. Review.
-
Adaptive integration of self-motion and goals in posterior parietal cortex.Cell Rep. 2022 Mar 8;38(10):110504. doi: 10.1016/j.celrep.2022.110504. Cell Rep. 2022. PMID: 35263604 Free PMC article.
-
Spatial context and the functional role of the postrhinal cortex.Neurobiol Learn Mem. 2022 Mar;189:107596. doi: 10.1016/j.nlm.2022.107596. Epub 2022 Feb 4. Neurobiol Learn Mem. 2022. PMID: 35131453 Free PMC article. Review.
-
Convergence of location, direction, and theta in the rat anteroventral thalamic nucleus.iScience. 2023 May 29;26(7):106993. doi: 10.1016/j.isci.2023.106993. eCollection 2023 Jul 21. iScience. 2023. PMID: 37448560 Free PMC article.
References
-
- Hafting T., Fyhn M., Molden S., Moser M.-B., Moser E. I., Microstructure of a spatial map in the entorhinal cortex. Nature 436, 801–806 (2005). - PubMed
-
- O’Keefe J., Dostrovsky J., The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34, 171–175 (1971). - PubMed
-
- Morris R. G. M., Garrud P., Rawlins J. N. P., O’Keefe J., Place navigation impaired in rats with hippocampal lesions. Nature 297, 681–683 (1982). - PubMed
-
- Steffenach H.-A., Witter M., Moser M.-B., Moser E. I., Spatial memory in the rat requires the dorsolateral band of the entorhinal cortex. Neuron 45, 301–313 (2005). - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources