Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Mar 13;477(5):853-871.
doi: 10.1042/BCJ20190339.

CBL-CIPK module-mediated phosphoregulation: facts and hypothesis

Affiliations
Review

CBL-CIPK module-mediated phosphoregulation: facts and hypothesis

Sibaji K Sanyal et al. Biochem J. .

Abstract

Calcium (Ca2+) signaling is a versatile signaling network in plant and employs very efficient signal decoders to transduce the encoded message. The CBL-CIPK module is one of the sensor-relay decoders that have probably evolved with the acclimatization of land plant. The CBLs are unique proteins with non-canonical Ca2+ sensing EF-hands, N-terminal localization motif and a C-terminal phosphorylation motif. The partner CIPKs are Ser/Thr kinases with kinase and regulatory domains. Phosphorylation plays a major role in the functioning of the module. As the module has a functional kinase to transduce signal, it employs phosphorylation as a preferred mode for modulation of targets as well as its interaction with CBL. We analyze the data on the substrate regulation by the module from the perspective of substrate phosphorylation. We have also predicted some of the probable sites in the identified substrates that may be the target of the CIPK mediated phosphorylation. In addition, phosphatases have been implicated in reversing the CIPK mediated phosphorylation of substrates. Therefore, we have also presented the role of phosphatases in the modulation of the CBL-CIPK and its targets. We present here an overview of the phosphoregulation mechanism of the CBL-CIPK module.

Keywords: CBL–CIPK; LC–MS/MS; phosphatases; phosphoproteomics; phosphosites.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources