Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 May;87(5):763-773.
doi: 10.1002/ana.25712. Epub 2020 Mar 17.

Neurophysiological Signatures of Motor Impairment in Patients with Rett Syndrome

Affiliations

Neurophysiological Signatures of Motor Impairment in Patients with Rett Syndrome

Pia Bernardo et al. Ann Neurol. 2020 May.

Abstract

Objective: Rett syndrome (RTT) is an X-linked dominant neurodevelopmental disorder due to pathogenic mutations in the MECP2 gene. Motor impairment constitutes the core diagnostic feature of RTT. Preclinical studies have consistently demonstrated alteration of excitation/inhibition (E/I) balance and aberrant synaptic plasticity at the cortical level. We aimed to understand neurobiological mechanisms underlying motor deficit by assessing in vivo synaptic plasticity and E/I balance in the primary motor cortex (M1).

Methods: In 14 patients with typical RTT, 9 epilepsy control patients, and 11 healthy controls, we applied paired-pulse transcranial magnetic stimulation (TMS) protocols to evaluate the excitation index, a biomarker reflecting the contribution of inhibitory and facilitatory circuits in M1. Intermittent TMS-theta burst stimulation was used to probe long-term potentiation (LTP)-like plasticity in M1. Motor impairment, assessed by ad hoc clinical scales, was correlated with neurophysiological metrics.

Results: RTT patients displayed a significant increase of the excitation index (p = 0.003), as demonstrated by the reduction of short-interval intracortical inhibition and increase of intracortical facilitation, suggesting a shift toward cortical excitation likely due to GABAergic dysfunction. Impairment of inhibitory circuits was also confirmed by the reduction of long-interval intracortical inhibition (p = 0.002). LTP-like plasticity in M1 was abolished (p = 0.008) and scaled with motor disability (all p = 0.003).

Interpretation: TMS is a method that can be used to assess cortical motor function in RTT patients. Our findings support the introduction of TMS measures in clinical and research settings to monitor the progression of motor deficit and response to treatment. ANN NEUROL 2020;87:763-773.

PubMed Disclaimer

References

    1. Amir RE, Van Den Veyver IB, Wan M, et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl- CpG-binding protein 2. Nat Genet 1999;23:185-188.
    1. Shahbazian MD, Antalffy B, Armstrong DL, Zoghbi HY. Insight into Rett syndrome: MeCP2 levels display tissue- and cell-specific differences and correlate with neuronal maturation. Hum Mol Genet 2002;11:115-124.
    1. Zhou Z, Hong EJ, Cohen S, et al. Brain-specific phosphorylation of MeCP2 regulates activity-dependent Bdnf transcription, dendritic growth, and spine maturation. Neuron 2006;52:255-269.
    1. Leonard H, Cobb S, Downs J. Clinical and biological progress over 50 years in Rett syndrome. Nat Rev Neurol 2016;13:37-51.
    1. Banerjee A, Rikhye RV, Breton-Provencher V, et al. Jointly reduced inhibition and excitation underlies circuit-wide changes in cortical processing in Rett syndrome. Proc Natl Acad Sci U S A 2016;113:E7287-E7296.