Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020:1219:203-223.
doi: 10.1007/978-3-030-34025-4_11.

Melanoma Metabolism: Cell Survival and Resistance to Therapy

Affiliations
Review

Melanoma Metabolism: Cell Survival and Resistance to Therapy

Rafael Luís et al. Adv Exp Med Biol. 2020.

Abstract

Cutaneous melanoma is one of the most aggressive types of cancer, presenting the highest potential to form metastases, both locally and distally, which are associated with high death rates of melanoma patients. A high somatic mutation burden is characteristic of these tumours, with most common oncogenic mutations occurring in the BRAF, NRAS and NF1 genes. These intrinsic oncogenic pathways contribute to the metabolic switch between glycolysis and oxidative phosphorylation metabolisms of melanoma, facilitating tumour progression and resulting in a high plasticity and adaptability to unfavourable conditions. Moreover, melanoma microenvironment can influence its own metabolism and reprogram several immune cell subset functions, enabling melanoma to evade the immune system. The knowledge of the biology, molecular alterations and microenvironment of melanoma has led to the development of new targeted therapies and the improvement of patient care. In this work, we reviewed the impact of melanoma metabolism in the resistance to BRAF and MEK inhibitors and immunotherapies, emphasizing the requirement to evaluate metabolic alterations upon development of novel therapeutic approaches. Here we summarized the current understanding of the impact of metabolic processes in melanomagenesis, metastasis and microenvironment, as well as the involvement of metabolic pathways in the immune modulation and resistance to targeted and immunocheckpoint therapies.

Keywords: Immunotherapy; Melanoma; Metabolic profile; Microenvironment; Oncogenic mutations; Targeted therapy.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Abildgaard C, Guldberg P (2015) Molecular drivers of cellular metabolic reprogramming in melanoma. Trends Mol Med 21:164–171. https://doi.org/10.1016/j.molmed.2014.12.007 - DOI - PubMed
    1. Aiderus A, Black MA, Dunbier AK (2018) Fatty acid oxidation is associated with proliferation and prognosis in breast and other cancers. BMC Cancer 18:1–15. https://doi.org/10.1186/s12885-018-4626-9 - DOI
    1. Alegre ML, Frauwirth KA, Thompson CB et al (2000) Inhibition of CTLA-4 function by the regulatory subunit of serine/threonine phosphatase 2A. J Immunol 168:5070–5078. https://doi.org/10.4049/jimmunol.168.10.5070 - DOI
    1. Ali Z, Yousaf N, Larkin J (2013) Melanoma epidemiology, biology and prognosis. Eur J Cancer Suppl 11:81–91. https://doi.org/10.1016/j.ejcsup.2013.07.012 - DOI
    1. Allemani C, Matsuda T, Di Carlo V et al (2018) Global surveillance of trends in cancer survival 2000–14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet 391:1023–1075. https://doi.org/10.1016/S0140-6736(17)33326-3 - DOI - PubMed

MeSH terms

Substances

LinkOut - more resources