MAGE-A inhibit apoptosis and promote proliferation in multiple myeloma through regulation of BIM and p21Cip1
- PMID: 32133047
- PMCID: PMC7041939
- DOI: 10.18632/oncotarget.27488
MAGE-A inhibit apoptosis and promote proliferation in multiple myeloma through regulation of BIM and p21Cip1
Abstract
The type I Melanoma Antigen Gene (MAGE) A3 is a functional target associated with survival and proliferation in multiple myeloma (MM). To investigate the mechanisms of these oncogenic functions, we performed gene expression profiling (GEP) of p53 wild-type human myeloma cell lines (HMCL) after MAGE-A knockdown, which identified a set of 201 differentially expressed genes (DEG) associated with apoptosis, DNA repair, and cell cycle regulation. MAGE knockdown increased protein levels of pro-apoptotic BIM and of the endogenous cyclin-dependent kinase (CDK) inhibitor p21Cip1. Depletion of MAGE-A in HMCL increased sensitivity to the alkylating agent melphalan but not to proteasome inhibition. High MAGEA3 was associated with the MYC and Cell Cycling clusters defined by a network model of GEP data from the CoMMpass database of newly diagnosed, untreated MM patients. Comparative analysis of CoMMpass subjects based on high or low MAGEA3 expression revealed a set of 6748 DEG that also had significant functional associations with cell cycle and DNA replication pathways, similar to that observed in HMCL. High MAGEA3 expression correlated with shorter overall survival after melphalan chemotherapy and autologous stem cell transplantation (ASCT). These results demonstrate that MAGE-A3 regulates Bim and p21Cip1 transcription and protein expression, inhibits apoptosis, and promotes proliferation.
Keywords: DNA repair; MAGE-A3; apoptosis; cell cycle regulation; multiple myeloma.
Conflict of interest statement
CONFLICTS OF INTEREST The authors declare no competing financial interests.
Figures





References
-
- Vansteenkiste JF, Cho BC, Vanakesa T, De Pas T, Zielinski M, Kim MS, Jassem J, Yoshimura M, Dahabreh J, Nakayama H, Havel L, Kondo H, Mitsudomi T, et al.. Efficacy of the MAGE-A3 cancer immunotherapeutic as adjuvant therapy in patients with resected MAGE-A3-positive non-small-cell lung cancer (MAGRIT): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2016; 17:822–835. 10.1016/S1470-2045(16)00099-1. - DOI - PubMed
-
- Lu YC, Parker LL, Lu T, Zheng Z, Toomey MA, White DE, Yao X, Li YF, Robbins PF, Feldman SA, van der Bruggen P, Klebanoff CA, Goff SL, et al.. Treatment of Patients With Metastatic Cancer Using a Major Histocompatibility Complex Class II-Restricted T-Cell Receptor Targeting the Cancer Germline Antigen MAGE-A3. J Clin Oncol. 2017; 35:3322–3329. 10.1200/JCO.2017.74.5463. - DOI - PMC - PubMed
-
- Cohen AD, Lendvai N, Gnjatic S, Jungbluth AA, Bertolini S, Pan L, Venhaus R, Tsakos I, Garcia K, Thibodeau L, Alpaugh K, Cummings N, Fellague-Chebra R, et al. MAGE-A3 Recombinant Protein (recMAGE-A3) Immunotherapy and Autologous Peripheral Blood Lymphocyte (PBL) Infusion Is Safe and Induces Robust Humoral Immune Responses In Multiple Myeloma (MM) Patients Undergoing Autologous Stem Cell Transplantation (autoSCT). American Society of Hematology Annual Meeting. (New Orleans, LA: ). 2013.