Parameter estimation for sigmoid Emax models in exposure-response relationship
- PMID: 32133323
- PMCID: PMC7042008
- DOI: 10.12793/tcp.2017.25.2.74
Parameter estimation for sigmoid Emax models in exposure-response relationship
Abstract
The purpose of this simulation study is to explore the limitation of the population PK/PD analysis using data from a clinical study and to help to construct an appropriate PK/PD design that enable precise and unbiased estimation of both fixed and random PD parameters in PK/PD analysis under different doses and Hill coefficients. Seven escalating doses of virtual drugs with equal potency and efficacy but with five different Hill coefficients were used in simulations of single and multiple dose scenarios with dense sampling design. A total of 70 scenarios with 100 subjects were simulated and estimated 100 times applying 1-compartment PK model and sigmoid Emax model. The bias and precision of the parameter estimates in each scenario were assessed using relative bias and relative root mean square error. For the single dose scenarios, most PD parameters of sigmoid Emax model were accurately and precisely estimated when the Cmax was more than 85% of EC50, except for typical value and inter-individual variability of EC50 which were poorly estimated at low Hill coefficients. For the multiple dose studies, the parameter estimation performance was not good. This simulation study demonstrated the effect of the relative range of sampled concentrations to EC50 and sigmoidicity on the parameter estimation performance using dense sampling design.
Keywords: PK/PD modeling and simulation; exposure-response relationship; pharmacodynamic parameter estimation; sigmoid Emax Model; stochastic simulation and estimation.
Copyright © 2017 Translational and Clinical Pharmacology.
Conflict of interest statement
Conflict of interest: The authors have nothing to declare.
Figures



Similar articles
-
Evaluation of mixture modeling with count data using NONMEM.J Pharmacokinet Pharmacodyn. 2003 Jun;30(3):167-83. doi: 10.1023/a:1025564409649. J Pharmacokinet Pharmacodyn. 2003. PMID: 14571690
-
Population pharmacodynamic parameter estimation from sparse sampling: effect of sigmoidicity on parameter estimates.AAPS J. 2009 Sep;11(3):535-40. doi: 10.1208/s12248-009-9131-2. Epub 2009 Jul 24. AAPS J. 2009. PMID: 19629711 Free PMC article.
-
Simultaneous vs. sequential analysis for population PK/PD data I: best-case performance.J Pharmacokinet Pharmacodyn. 2003 Dec;30(6):387-404. doi: 10.1023/b:jopa.0000012998.04442.1f. J Pharmacokinet Pharmacodyn. 2003. PMID: 15000421
-
Pharmacodynamic parameter estimation: population size versus number of samples.AAPS J. 2005 Oct 5;7(2):46. doi: 10.1208/aapsj070246. AAPS J. 2005. PMID: 16353905 Free PMC article. Review.
-
Basic concepts of pharmacokinetic/pharmacodynamic (PK/PD) modelling.Int J Clin Pharmacol Ther. 1997 Oct;35(10):401-13. Int J Clin Pharmacol Ther. 1997. PMID: 9352388 Review.
Cited by
-
Checkerboard synergistic data analysis using a Hill function-based approach.bioRxiv [Preprint]. 2025 Feb 8:2025.02.05.636765. doi: 10.1101/2025.02.05.636765. bioRxiv. 2025. PMID: 39975223 Free PMC article. Preprint.
-
Population pharmacokinetic, pharmacodynamic and efficacy modeling of SB12 (proposed eculizumab biosimilar) and reference eculizumab.Eur J Clin Pharmacol. 2024 Sep;80(9):1325-1338. doi: 10.1007/s00228-024-03703-8. Epub 2024 May 30. Eur J Clin Pharmacol. 2024. PMID: 38814441 Free PMC article.
-
Impact of Sampling Period on Population Pharmacokinetic Analysis of Antibiotics: Why do You Take Blood Samples Following the Fourth Dose?Pharmaceuticals (Basel). 2020 Sep 16;13(9):249. doi: 10.3390/ph13090249. Pharmaceuticals (Basel). 2020. PMID: 32947890 Free PMC article.
-
Formulation and Validation of an Extended Sigmoid Emax Model in Pharmacodynamics.Pharm Res. 2024 Sep;41(9):1787-1795. doi: 10.1007/s11095-024-03752-9. Epub 2024 Aug 14. Pharm Res. 2024. PMID: 39143408
-
Control Theory and Cancer Chemotherapy: How They Interact.Front Bioeng Biotechnol. 2021 Jan 14;8:621269. doi: 10.3389/fbioe.2020.621269. eCollection 2020. Front Bioeng Biotechnol. 2021. PMID: 33520972 Free PMC article. Review.
References
-
- Wang Y, Bhattaram AV, Jadhav PR, Lesko LJ, Madabushi R, Powell JR, et al. Leveraging prior quantitative knowledge to guide drug development decisions and regulatory science recommendations: impact of FDA pharmacometrics during 2004-2006. J Clin Pharmacol. 2008;48:146–156. doi: 10.1177/0091270007311111. - DOI - PubMed
LinkOut - more resources
Full Text Sources