Optical Excitation of a Nanoparticle Cu/p-NiO Photocathode Improves Reaction Selectivity for CO2 Reduction in Aqueous Electrolytes
- PMID: 32134672
- DOI: 10.1021/acs.nanolett.9b04895
Optical Excitation of a Nanoparticle Cu/p-NiO Photocathode Improves Reaction Selectivity for CO2 Reduction in Aqueous Electrolytes
Abstract
We report the light-induced modification of catalytic selectivity for photoelectrochemical CO2 reduction in aqueous media using copper (Cu) nanoparticles dispersed onto p-type nickel oxide (p-NiO) photocathodes. Optical excitation of Cu nanoparticles generates hot electrons available for driving CO2 reduction on the Cu surface, while charge separation is accomplished by hot-hole injection from the Cu nanoparticles into the underlying p-NiO support. Photoelectrochemical studies demonstrate that optical excitation of plasmonic Cu/p-NiO photocathodes imparts increased selectivity for CO2 reduction over hydrogen evolution in aqueous electrolytes. Specifically, we observed that plasmon-driven CO2 reduction increased the production of carbon monoxide and formate, while simultaneously reducing the evolution of hydrogen. Our results demonstrate an optical route toward steering the selectivity of artificial photosynthetic systems with plasmon-driven photocathodes for photoelectrochemical CO2 reduction in aqueous media.
Keywords: CO2 reduction; artificial photosynthesis; hot holes; photoelectrochemistry; plasmonic photocathode.
Similar articles
-
Hot Hole Collection and Photoelectrochemical CO2 Reduction with Plasmonic Au/p-GaN Photocathodes.Nano Lett. 2018 Apr 11;18(4):2545-2550. doi: 10.1021/acs.nanolett.8b00241. Epub 2018 Mar 15. Nano Lett. 2018. PMID: 29522350
-
Steering the Pathway of Plasmon-Enhanced Photoelectrochemical CO2 Reduction by Bridging Si and Au Nanoparticles through a TiO2 Interlayer.Small. 2022 May;18(20):e2201882. doi: 10.1002/smll.202201882. Epub 2022 Apr 18. Small. 2022. PMID: 35435325
-
Visible-light-driven CO2 reduction on dye-sensitized NiO photocathodes decorated with palladium nanoparticles.RSC Adv. 2020 Aug 27;10(52):31680-31690. doi: 10.1039/d0ra04673f. eCollection 2020 Aug 21. RSC Adv. 2020. PMID: 35520659 Free PMC article.
-
Cu2ZnSnS4 (CZTS) for Photoelectrochemical CO2 Reduction: Efficiency, Selectivity, and Stability.Nanomaterials (Basel). 2023 Oct 15;13(20):2762. doi: 10.3390/nano13202762. Nanomaterials (Basel). 2023. PMID: 37887913 Free PMC article. Review.
-
Molecular Catalyst Immobilized Photocathodes for Water/Proton and Carbon Dioxide Reduction.ChemSusChem. 2015 Nov;8(22):3746-59. doi: 10.1002/cssc.201500983. Epub 2015 Oct 6. ChemSusChem. 2015. PMID: 26437747 Review.
Cited by
-
Hot-Carrier Transfer across a Nanoparticle-Molecule Junction: The Importance of Orbital Hybridization and Level Alignment.Nano Lett. 2022 Nov 9;22(21):8786-8792. doi: 10.1021/acs.nanolett.2c02327. Epub 2022 Oct 6. Nano Lett. 2022. PMID: 36200744 Free PMC article.
-
Phonon-Assisted Hot Carrier Generation in Plasmonic Semiconductor Systems.Nano Lett. 2021 Jan 27;21(2):1083-1089. doi: 10.1021/acs.nanolett.0c04419. Epub 2021 Jan 8. Nano Lett. 2021. PMID: 33416331 Free PMC article.
-
Distinguishing Inner and Outer-Sphere Hot Electron Transfer in Au/p-GaN Photocathodes.Nano Lett. 2024 Dec 18;24(50):16008-16014. doi: 10.1021/acs.nanolett.4c04319. Epub 2024 Nov 1. Nano Lett. 2024. PMID: 39485682 Free PMC article.
-
Chemistry of Materials Underpinning Photoelectrochemical Solar Fuel Production.Chem Rev. 2025 May 28;125(10):4768-4839. doi: 10.1021/acs.chemrev.4c00258. Epub 2025 May 6. Chem Rev. 2025. PMID: 40327786 Free PMC article. Review.
-
Single Particle Approaches to Plasmon-Driven Catalysis.Nanomaterials (Basel). 2020 Nov 29;10(12):2377. doi: 10.3390/nano10122377. Nanomaterials (Basel). 2020. PMID: 33260302 Free PMC article.
LinkOut - more resources
Full Text Sources