Review and comparative analysis of machine learning-based phage virion protein identification methods
- PMID: 32135196
- DOI: 10.1016/j.bbapap.2020.140406
Review and comparative analysis of machine learning-based phage virion protein identification methods
Abstract
Phage virion protein (PVP) identification plays key role in elucidating relationships between phages and hosts. Moreover, PVP identification can facilitate the design of related biochemical entities. Recently, several machine learning approaches have emerged for this purpose and have shown their potential capacities. In this study, the proposed PVP identifiers are systemically reviewed, and the related algorithms and tools are comprehensively analyzed. We summarized the common framework of these PVP identifiers and constructed our own novel identifiers based upon the framework. Furthermore, we focus on a performance comparison of all PVP identifiers by using a training dataset and an independent dataset. Highlighting the pros and cons of these identifiers demonstrates that g-gap DPC (dipeptide composition) features are capable of representing characteristics of PVPs. Moreover, SVM (support vector machine) is proven to be the more effective classifier to distinguish PVPs and non-PVPs.
Keywords: G-gap DPC; Machine leaning; Phage virion proteins; Support vector machine.
Copyright © 2020 Elsevier B.V. All rights reserved.
Conflict of interest statement
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous
