Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Apr 3;85(7):5058-5064.
doi: 10.1021/acs.joc.9b03082. Epub 2020 Mar 13.

Selective Carboxylate Recognition Using Urea-Functionalized Unclosed Cryptands: Mild Synthesis and Complexation Studies

Affiliations

Selective Carboxylate Recognition Using Urea-Functionalized Unclosed Cryptands: Mild Synthesis and Complexation Studies

Patryk Niedbała et al. J Org Chem. .

Abstract

Herein we present the synthesis and evaluation of anion-binding properties of 12 new receptors from the unclosed cryptand family. Their core is built on the stable 26-membered tetraamidic macrocyclic scaffold, whereas various alkyl and aryl urea substituents were introduced after a yield-limiting macrocyclization step (65-98%). The receptors strongly bind anions, in particular carboxylates, even in a highly competitive solvent mixture (DMSO-d6 + H2O 95:5 v/v).

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Scheme 1
Scheme 1. Synthesis of N-Boc-Protected Macrocyclic Precursor 3 and Its Postfunctionalization to 4al
Scheme 2
Scheme 2. Energy-Minimized Structures of Free Receptor 4c and Its Complex with the Benzoate Anion
Scheme 3
Scheme 3. Carboxylate-Induced Deprotonation of the Receptor 4g and Corresponding Charge-Transfer Transition States
Figure 1
Figure 1
Structures of receptors 4d and 5.
Figure 2
Figure 2
Crystal structure of receptor 4l, top (a) and side (b) views. Nonacidic protons and remaining disordered water molecules were omitted for clarity.

References

    1. For examples, see:

    2. Dietrich B.; Lehn J. M.; Sauvage J. P. Diaza-Polyoxa-Macrocycles et Macrobicycles. Tetrahedron Lett. 1969, 10, 2885–2888. 10.1016/S0040-4039(01)88299-X. - DOI
    3. Dietrich B.; Lehn J. M.; Sauvage J. P. Les Cryptates. Tetrahedron Lett. 1969, 10, 2889–2892. 10.1016/S0040-4039(01)88300-3. - DOI
    4. Lehn J. M. Cryptates: Inclusion Complexes of Macropolycyclic Receptor Molecules. Pure Appl. Chem. 1978, 50, 871–892. 10.1351/pac197850090871. - DOI
    5. Lehn J. M. Supramolecular Chemistry - Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture). Angew. Chem., Int. Ed. Engl. 1988, 27, 89–112. 10.1002/anie.198800891. - DOI
    1. For examples, see:

    2. Armstrong C. M. The Na/K Pump, Cl Ion, and Osmotic Stabilization of Cells. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 6257–6262. 10.1073/pnas.0931278100. - DOI - PMC - PubMed
    3. Gale P. A.; Busschaert N.; Haynes C. J. E.; Karagiannidis L. E.; Kirby I. L. Anion Receptor Chemistry: Highlights from 2011 and 2012. Chem. Soc. Rev. 2014, 43, 205–241. 10.1039/C3CS60316D. - DOI - PubMed
    4. Salis A.; Ninham B. W. Models and Mechanisms of Hofmeister Effects in Electrolyte Solutions, and Colloid and Protein Systems Revisited. Chem. Soc. Rev. 2014, 43, 7358–7377. 10.1039/C4CS00144C. - DOI - PubMed
    5. Evans N. H.; Beer P. D. Advances in Anion Supramolecular Chemistry: From Recognition to Chemical Applications. Angew. Chem., Int. Ed. 2014, 53, 11716–11754. 10.1002/anie.201309937. - DOI - PubMed
    6. Busschaert N.; Caltagirone C.; Van Rossom W.; Gale P. A. Applications of Supramolecular Anion Recognition. Chem. Rev. 2015, 115, 8038–8155. 10.1021/acs.chemrev.5b00099. - DOI - PubMed
    7. Tapia L.; Pérez Y.; Bolte M.; Casas J.; Solà J.; Quesada R.; Alfonso I. pH-Dependent Chloride Transport by Pseudopeptidic Cages for the Selective Killing of Cancer Cells in Acidic Microenvironments. Angew. Chem., Int. Ed. 2019, 58, 12465–12468. 10.1002/anie.201905965. - DOI - PubMed
    1. For examples, see:

    2. Mahadevi A. S.; Sastry G. N. Cooperativity in Noncovalent Interactions. Chem. Rev. 2016, 116, 2775–2825. 10.1021/cr500344e. - DOI - PubMed
    3. Molina P.; Zapata F.; Caballero A. Anion Recognition Strategies Based on Combined Noncovalent Interactions. Chem. Rev. 2017, 117, 9907–9972. 10.1021/acs.chemrev.6b00814. - DOI - PubMed
    1. For examples, see:

    2. Dydio P.; Lichosyt D.; Jurczak J. Amide- and Urea-Functionalized Pyrroles and Benzopyrroles as Synthetic, Neutral Anion Receptors. Chem. Soc. Rev. 2011, 40, 2971–2985. 10.1039/c1cs15006e. - DOI - PubMed
    3. Jurczak J.; Dydio P.; Stępniak P.; Zieliński T. Diamidonaphthalenodipyrrole-Derived Fluorescent Sensors for Anions. Sens. Actuators, B 2016, 237, 621–627. 10.1016/j.snb.2016.06.142. - DOI
    1. Bru M.; Alfonso I.; Burguete M. I.; Luis S. V. Anion-Templated Syntheses of Pseudopeptidic Macrocycles. Angew. Chem., Int. Ed. 2006, 45, 6155–6159. 10.1002/anie.200602206. - DOI - PubMed