Phylogenetically informative mutations in genes implicated in antibiotic resistance in Mycobacterium tuberculosis complex
- PMID: 32143680
- PMCID: PMC7060619
- DOI: 10.1186/s13073-020-00726-5
Phylogenetically informative mutations in genes implicated in antibiotic resistance in Mycobacterium tuberculosis complex
Abstract
Background: A comprehensive understanding of the pre-existing genetic variation in genes associated with antibiotic resistance in the Mycobacterium tuberculosis complex (MTBC) is needed to accurately interpret whole-genome sequencing data for genotypic drug susceptibility testing (DST).
Methods: We investigated mutations in 92 genes implicated in resistance to 21 anti-tuberculosis drugs using the genomes of 405 phylogenetically diverse MTBC strains. The role of phylogenetically informative mutations was assessed by routine phenotypic DST data for the first-line drugs isoniazid, rifampicin, ethambutol, and pyrazinamide from a separate collection of over 7000 clinical strains. Selected mutations/strains were further investigated by minimum inhibitory concentration (MIC) testing.
Results: Out of 547 phylogenetically informative mutations identified, 138 were classified as not correlating with resistance to first-line drugs. MIC testing did not reveal a discernible impact of a Rv1979c deletion shared by M. africanum lineage 5 strains on resistance to clofazimine. Finally, we found molecular evidence that some MTBC subgroups may be hyper-susceptible to bedaquiline and clofazimine by different loss-of-function mutations affecting a drug efflux pump subunit (MmpL5).
Conclusions: Our findings underline that the genetic diversity in MTBC has to be studied more systematically to inform the design of clinical trials and to define sound epidemiologic cut-off values (ECOFFs) for new and repurposed anti-tuberculosis drugs. In that regard, our comprehensive variant catalogue provides a solid basis for the interpretation of mutations in genotypic as well as in phenotypic DST assays.
Keywords: Benign mutations; Drug resistance; Intrinsic resistance; Mycobacterium tuberculosis.
Conflict of interest statement
CUK is a consultant for the WHO Regional Office for Europe, Becton Dickinson, and QuantuMDx Group Ltd. CUK is an unpaid advisor to GenoScreen and consulted for the Foundation for Innovative New Diagnostics, which involved work for Cepheid Inc., Hain Lifescience, and WHO. The Bill & Melinda Gates Foundation and Hain Lifescience covered CUK’s travel and accommodation to present at meetings. The Global Alliance for TB Drug Development Inc. and Otsuka Novel Products GmbH have supplied CUK with antibiotics for in vitro research. YD Diagnostics has provided CUK with assays for an evaluation. JP is a paid consultant to Next Gen Diagnostics. All remaining authors declare that they have no competing interests.
Figures

References
-
- Stop TB Partnership | G20 Leaders Elevate TB challenge to Heads of State Level [Internet]. [cited 2017 Nov 24]. Available from: http://www.stoptb.org/news/stories/2017/ns17_044.asp.
-
- Dheda K, Gumbo T, Maartens G, Dooley KE, Murray M, Furin J, et al. The Lancet Respiratory Medicine Commission: 2019 update: epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant and incurable tuberculosis. Lancet Respir Med. 2019;7:820–826. doi: 10.1016/S2213-2600(19)30263-2. - DOI - PubMed
-
- Schön T, Miotto P, Köser CU, Viveiros M, Böttger E, Cambau E. Mycobacterium tuberculosis drug-resistance testing: challenges, recent developments and perspectives. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis. 2017;23:154–160. - PubMed
-
- World Health Organization. (2018). Technical report on critical concentrations for drug susceptibility testing of medicines used in the treatment of drug-resistant tuberculosis. World Health Organization. https://apps.who.int/iris/handle/10665/260470. Lizenz: CC BY-NC-SA 3.0 IGO.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases