Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jun:126:110063.
doi: 10.1016/j.biopha.2020.110063. Epub 2020 Mar 4.

Calcio-herbal formulation, Divya-Swasari-Ras, alleviates chronic inflammation and suppresses airway remodelling in mouse model of allergic asthma by modulating pro-inflammatory cytokine response

Affiliations
Free article

Calcio-herbal formulation, Divya-Swasari-Ras, alleviates chronic inflammation and suppresses airway remodelling in mouse model of allergic asthma by modulating pro-inflammatory cytokine response

Acharya Balkrishna et al. Biomed Pharmacother. 2020 Jun.
Free article

Abstract

Asthma is a chronic allergic respiratory disease with limited therapeutic options. Here we validated the potential anti-inflammatory, anti-asthmatic and immunomodulatory therapeutic properties of calcio-herbal ayurvedic formulation, Divya-Swasari-Ras (DSR) in-vivo, using mouse model of ovalbumin (OVA) induced allergic asthma. HPLC analysis identified the presence of various bioactive indicating molecules and ICP-OES recognized the presence of Ca mineral in the DSR formulation. Here we show that DSR treatment significantly reduced cardinal features of allergic asthma including inflammatory cell accumulation, specifically lymphocytes and eosinophils in the Broncho-Alveolar Lavage (BAL) fluids, airway inflammation, airway remodelling, and pro-inflammatory molecules expression. Conversely, number of macrophages recoverable by BAL were increased upon DSR treatment. Histology analysis of mice lungs revealed that DSR attenuates inflammatory cell infiltration in lungs and thickening of bronchial epithelium. PAS staining confirmed the decrease in OVA-induced mucus secretion at the mucosal epithelium; and trichrome staining confirmed the decrease in peribronchial collagen deposition upon DSR treatment. DSR reduced the OVA-induced pro-inflammatory cytokines (IL-6, IL-1β and TNF-α) levels in BALF and whole lung steady state mRNA levels (IL-4, -5, -33, IFN-γ, IL-6 and IL-1β). Biochemical assays for markers of oxidative stress and antioxidant defence mechanism confirmed that DSR increases the activity of SOD, Catalase, GPx, GSH, GSH/GSSG ratio and decreases the levels of MDA activity, GSSG, EPO and Nitrite levels in whole lungs. Collectively, present study suggests that, DSR effectively protects against allergic airway inflammation and possess potential therapeutic option for allergic asthma management.

Keywords: Airway inflammation; Chronic asthma; Divya-Swasari-Ras (DSR); Oxidative stress; Th2 cytokine.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare no competing interests in the publication of the data in this manuscript.