Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 May:194:110407.
doi: 10.1016/j.ecoenv.2020.110407. Epub 2020 Mar 5.

A 50-Hz magnetic-field exposure promotes human amniotic cells proliferation via SphK-S1P-S1PR cascade mediated ERK signaling pathway

Affiliations

A 50-Hz magnetic-field exposure promotes human amniotic cells proliferation via SphK-S1P-S1PR cascade mediated ERK signaling pathway

Liangjing Chen et al. Ecotoxicol Environ Saf. 2020 May.

Abstract

Extremely low-frequency electromagnetic fields (ELF-EMFs) present a kind of common non-ionizing radiation in public and occupational environments. Previous studies have suggested that ELF-EMF exposure might have a potential impact on co-carcinogenesis and the progression of tumorigenesis by inducing cell proliferation. However, the underlying mechanisms remain largely unknown. In this study, we investigated the possible role of the sphingosine-1-phosphate (S1P)-related pathway in regulating cell proliferation induced by 50-Hz, 0.4-mT magnetic-field (MF) exposure. The results showed that MF exposure significantly promoted sphingosine kinase 1 (SphK1) activity, and that inhibition of the SphK1-S1P-S1P receptor (S1PR) pathway could remarkably reverse MF-induced cell proliferation. Additionally, we could infer indirectly from an exogenous-S1P experiment that MF-induced S1P might act on S1PR1/3 in a paracrine and/or autocrine manner to mediate the proliferation effect. Notably, although the MF activated the extracellular signal-regulated kinase (ERK) and protein kinase B (Akt) pathways, the SphK1-S1P-S1PR1/3 cascade regulated MF-induced proliferation by activating the ERK rather than the Akt pathway. Taken together, the findings of this study indicated that the SphK1-S1P-S1PR1/3 cascade played an important role in MF-induced proliferation by mediating the ERK signaling pathway, which could bring new insights into understanding and preventing the adverse effects of MFs.

Keywords: 50-Hz magnetic-field (MF) exposure; Extracellular signal-regulated kinase (ERK); Proliferation; Sphingosine kinase 1 (SphK1); Sphingosine-1-phosphate (S1P).

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources