Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 May:125:258-280.
doi: 10.1016/j.neunet.2020.02.011. Epub 2020 Feb 25.

Supervised learning in spiking neural networks: A review of algorithms and evaluations

Affiliations
Review

Supervised learning in spiking neural networks: A review of algorithms and evaluations

Xiangwen Wang et al. Neural Netw. 2020 May.

Abstract

As a new brain-inspired computational model of the artificial neural network, a spiking neural network encodes and processes neural information through precisely timed spike trains. Spiking neural networks are composed of biologically plausible spiking neurons, which have become suitable tools for processing complex temporal or spatiotemporal information. However, because of their intricately discontinuous and implicit nonlinear mechanisms, the formulation of efficient supervised learning algorithms for spiking neural networks is difficult, and has become an important problem in this research field. This article presents a comprehensive review of supervised learning algorithms for spiking neural networks and evaluates them qualitatively and quantitatively. First, a comparison between spiking neural networks and traditional artificial neural networks is provided. The general framework and some related theories of supervised learning for spiking neural networks are then introduced. Furthermore, the state-of-the-art supervised learning algorithms in recent years are reviewed from the perspectives of applicability to spiking neural network architecture and the inherent mechanisms of supervised learning algorithms. A performance comparison of spike train learning of some representative algorithms is also made. In addition, we provide five qualitative performance evaluation criteria for supervised learning algorithms for spiking neural networks and further present a new taxonomy for supervised learning algorithms depending on these five performance evaluation criteria. Finally, some future research directions in this research field are outlined.

Keywords: Performance evaluation; Spike train; Spiking neural network; Spiking neuron; Supervised learning.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources