Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Feb;32(2):53-62.
doi: 10.1080/08958378.2020.1735581. Epub 2020 Mar 9.

Expert workshop on the hazards and risks of poorly soluble low toxicity particles

Affiliations
Free article
Review

Expert workshop on the hazards and risks of poorly soluble low toxicity particles

Kevin E Driscoll et al. Inhal Toxicol. 2020 Feb.
Free article

Abstract

'Lung particle overload' refers to the impaired lung particle clearance and increased particle retention occurring with high lung doses of poorly soluble low toxicity (PSLT) particles. In rats, lung particle overload is associated with inflammation, epithelial hyperplasia, and, in extreme cases, lung cancer. While the human relevance of rat lung tumors occurring under overload has been questioned, recent regulatory decisions have considered these outcomes evidence of possible human hazard. To better understand the state-of-the-science on PSLT toxicology, an Expert Workshop was held to document agreements and differences amongst a panel of highly experienced scientists and regulators. Key outcomes included: a functional definition of PSLTs; agreement the rat is a sensitive model for PSLT inhalation toxicology; identifying lung inflammation as a critical endpoint for PSLT risk assessment; and, agreement rat lung cancer occurring only under conditions of lung particle overload does not imply a cancer hazard for humans under non-overloading exposures. Moreover, when asked - should PSLTs be considered as human lung carcinogens based on rat data alone (and no supporting data from other species), the expert consensus was: 'No. However, the experts noted the current default regulatory position on rat lung overload data alone would be the suspicion of human carcinogen hazard.' The many areas of the expert agreement provide guidance for design, interpretation, and extrapolating PSLT inhalation toxicology studies. Considering the workshop outcomes, the authors recommend guidelines for evaluation and classification of PSLT be reassessed; and, prior decisions on PSLT hazard classification be revisited to determine if they remain appropriate.

Keywords: PSLT; hazard; inhalation; lung cancer; lung particle overload; particles; risk.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources