The single-cell eQTLGen consortium
- PMID: 32149610
- PMCID: PMC7077978
- DOI: 10.7554/eLife.52155
The single-cell eQTLGen consortium
Abstract
In recent years, functional genomics approaches combining genetic information with bulk RNA-sequencing data have identified the downstream expression effects of disease-associated genetic risk factors through so-called expression quantitative trait locus (eQTL) analysis. Single-cell RNA-sequencing creates enormous opportunities for mapping eQTLs across different cell types and in dynamic processes, many of which are obscured when using bulk methods. Rapid increase in throughput and reduction in cost per cell now allow this technology to be applied to large-scale population genetics studies. To fully leverage these emerging data resources, we have founded the single-cell eQTLGen consortium (sc-eQTLGen), aimed at pinpointing the cellular contexts in which disease-causing genetic variants affect gene expression. Here, we outline the goals, approach and potential utility of the sc-eQTLGen consortium. We also provide a set of study design considerations for future single-cell eQTL studies.
Keywords: PBMC; eQTL; gene regulatory network; genetics; genomics; human; science forum; single-cell.
© 2020, van der Wijst et al.
Conflict of interest statement
Mv, Dd, HG, GT, CH, MB, OS, MN, YI, Pv, CY, JP, FT, AM, MH, LF No competing interests declared
Figures





Similar articles
-
The Power of Single-Cell RNA Sequencing in eQTL Discovery.Genes (Basel). 2022 Mar 12;13(3):502. doi: 10.3390/genes13030502. Genes (Basel). 2022. PMID: 35328055 Free PMC article. Review.
-
SingleQ: a comprehensive database of single-cell expression quantitative trait loci (sc-eQTLs) cross human tissues.Database (Oxford). 2024 Mar 9;2024:baae010. doi: 10.1093/database/baae010. Database (Oxford). 2024. PMID: 38459946 Free PMC article.
-
Optimizing expression quantitative trait locus mapping workflows for single-cell studies.Genome Biol. 2021 Jun 24;22(1):188. doi: 10.1186/s13059-021-02407-x. Genome Biol. 2021. PMID: 34167583 Free PMC article.
-
Whole-organism eQTL mapping at cellular resolution with single-cell sequencing.Elife. 2021 Mar 18;10:e65857. doi: 10.7554/eLife.65857. Elife. 2021. PMID: 33734084 Free PMC article.
-
Research progress on single-cell expression quantitative trait loci.Yi Chuan. 2024 Oct;46(10):795-806. doi: 10.16288/j.yczz.24-162. Yi Chuan. 2024. PMID: 39443309 Review.
Cited by
-
From GWAS to Gene: Transcriptome-Wide Association Studies and Other Methods to Functionally Understand GWAS Discoveries.Front Genet. 2021 Sep 30;12:713230. doi: 10.3389/fgene.2021.713230. eCollection 2021. Front Genet. 2021. PMID: 34659337 Free PMC article. Review.
-
Single-Cell Dissection of the Immune Response After Acute Myocardial Infarction.Circ Genom Precis Med. 2024 Jun;17(3):e004374. doi: 10.1161/CIRCGEN.123.004374. Epub 2024 May 16. Circ Genom Precis Med. 2024. PMID: 38752343 Free PMC article.
-
Methods for isolation and transcriptional profiling of individual cells from the human heart.Heliyon. 2020 Dec 29;6(12):e05810. doi: 10.1016/j.heliyon.2020.e05810. eCollection 2020 Dec. Heliyon. 2020. PMID: 33426328 Free PMC article.
-
Single-cell genomics meets human genetics.Nat Rev Genet. 2023 Aug;24(8):535-549. doi: 10.1038/s41576-023-00599-5. Epub 2023 Apr 21. Nat Rev Genet. 2023. PMID: 37085594 Free PMC article. Review.
-
The Farm Animal Genotype-Tissue Expression (FarmGTEx) Project.Nat Genet. 2025 Apr;57(4):786-796. doi: 10.1038/s41588-025-02121-5. Epub 2025 Mar 17. Nat Genet. 2025. PMID: 40097783 Review.
References
-
- Aibar S, González-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, Rambow F, Marine JC, Geurts P, Aerts J, van den Oord J, Atak ZK, Wouters J, Aerts S. SCENIC: single-cell regulatory network inference and clustering. Nature Methods. 2017;14:1083–1086. doi: 10.1038/nmeth.4463. - DOI - PMC - PubMed
-
- Alquicira-Hernández J, Sathe A, Ji HP, Nguyen Q, Powell JE. scPred: cell type prediction at single-cell resolution. bioRxiv. 2018 doi: 10.1101/369538. - DOI
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources