Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Mar 5;9(3):216.
doi: 10.3390/antiox9030216.

An Update of Palmitoylethanolamide and Luteolin Effects in Preclinical and Clinical Studies of Neuroinflammatory Events

Affiliations
Review

An Update of Palmitoylethanolamide and Luteolin Effects in Preclinical and Clinical Studies of Neuroinflammatory Events

Marika Cordaro et al. Antioxidants (Basel). .

Abstract

The inflammation process represents of a dynamic series of phenomena that manifest themselves with an intense vascular reaction. Neuroinflammation is a reply from the central nervous system (CNS) and the peripheral nervous system (PNS) to a changed homeostasis. There are two cell systems that mediate this process: the glia of the CNS and the lymphocites, monocytes, and macrophages of the hematopoietic system. In both the peripheral and central nervous systems, neuroinflammation plays an important role in the pathogenesis of neurodegenerative diseases, such as Parkinson's and Alzheimer's diseases, and in neuropsychiatric illnesses, such as depression and autism spectrum disorders. The resolution of neuroinflammation is a process that allows for inflamed tissues to return to homeostasis. In this process the important players are represented by lipid mediators. Among the naturally occurring lipid signaling molecules, a prominent role is played by the N-acylethanolamines, namely N-arachidonoylethanolamine and its congener N-palmitoylethanolamine, which is also named palmitoylethanolamide or PEA. PEA possesses a powerful neuroprotective and anti-inflammatory power but has no antioxidant effects per se. For this reason, its co-ultramicronization with the flavonoid luteolin is more efficacious than either molecule alone. Inhibiting or modulating the enzymatic breakdown of PEA represents a complementary therapeutic approach to treating neuroinflammation. The aim of this review is to discuss the role of ultramicronized PEA and co-ultramicronized PEA with luteolin in several neurological diseases using preclinical and clinical approaches.

Keywords: CNS pathology; adaptive immune response; cell homeostasis; clinical; co-ultramicronization; luteolin; neuroinflammation; palmitoylethanolamide.

PubMed Disclaimer

Conflict of interest statement

Salvatore Cuzzocrea is a co-inventor on patent WO2013121449 A8 (Epitech Group Srl), which deals with methods and compositions for the modulation of amidases capable of hydrolyzing N-acylethanolamines that are employable in the treatment of inflammatory diseases. This invention is wholly unrelated to the present study. Moreover, Cuzzocrea is also, with the Epitech Group, a co-inventor on the following patents: EP 2 821 083; MI2014 A001495; 102015000067344, that are unrelated to the study. The remaining authors report no conflict of interest.

Figures

Figure 1
Figure 1
Fatty acid ethanolamines’ metabolism and catabolism. Abbreviations: ABHD: α/β-Hydrolase domain containing, DAGL: diacylglycerol lipase, FAAH: fatty acid amide hydrolase, GDE: glycerophosphodiesterase, MAGL: monoacylglycerol lipase, NAAH: N-Acyl-ethanolamine-hydrolyzing acid amidase, NAPE: N-acyl-phosphatidylethanolamine, PLC: phospholipase C, PLD: phospholipase D, PTPN22: tyrosine phosphatase, SHIP1: inositol 5′-phosphatase, sPLA2: secretory phospholipase A2.
Figure 2
Figure 2
Palmitoylethanolamide (PEA) acts on several types of cells that are involved during an neuroinflammation event.

Similar articles

Cited by

References

    1. Gibbins I. The five cardinal signs of inflammation. Med. J. Aust. 2018;208:295. doi: 10.5694/mja17.00214. - DOI
    1. Ellis A., Bennett D.L. Neuroinflammation and the generation of neuropathic pain. Br. J. Anaesth. 2013;111:26–37. doi: 10.1093/bja/aet128. - DOI - PubMed
    1. Ji R.R., Xu Z.Z., Gao Y.J. Emerging targets in neuroinflammation-driven chronic pain. Nat. Rev. Drug Discov. 2014;13:533–548. doi: 10.1038/nrd4334. - DOI - PMC - PubMed
    1. Hickey W.F., Kimura H. Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science. 1988;239:290–292. doi: 10.1126/science.3276004. - DOI - PubMed
    1. Skaper S.D., Giusti P., Facci L. Microglia and mast cells: Two tracks on the road to neuroinflammation. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2012;26:3103–3117. doi: 10.1096/fj.11-197194. - DOI - PubMed

LinkOut - more resources