PACO: Python-Based Atmospheric COrrection
- PMID: 32151105
- PMCID: PMC7085641
- DOI: 10.3390/s20051428
PACO: Python-Based Atmospheric COrrection
Abstract
The atmospheric correction of satellite images based on radiative transfer calculations is a prerequisite for many remote sensing applications. The software package ATCOR, developed at the German Aerospace Center (DLR), is a versatile atmospheric correction software, capable of processing data acquired by many different optical satellite sensors. Based on this well established algorithm, a new Python-based atmospheric correction software has been developed to generate L2A products of Sentinel-2, Landsat-8, and of new space-based hyperspectral sensors such as DESIS (DLR Earth Sensing Imaging Spectrometer) and EnMAP (Environmental Mapping and Analysis Program). This paper outlines the underlying algorithms of PACO, and presents the validation results by comparing L2A products generated from Sentinel-2 L1C images with in situ (AERONET and RadCalNet) data within VNIR-SWIR spectral wavelengths range.
Keywords: DESIS; Landsat-8; Sentinel-2; aerosol optical thickness; atmospheric correction; remote sensing; surface reflectance; water vapor.
Conflict of interest statement
The authors declare no conflict of interest.
Figures








References
-
- Vermote E.F., El Saleous N., Justice C.O., Kaufman Y.J., Privette J.L., Remer L., Roger J.C., Tanré D. Atmospheric correction of visible to middle-infrared EOS-MODIS data over land surfaces: Background, operational algorithm and validation. J. Geophys. Res. Atmos. 1997;102:17131–17141. doi: 10.1029/97JD00201. - DOI
-
- Thompson D., Guanter L., Berk A., Gao B.C., Richter R., Schläpfer D., Thome K. Retrieval of Atmospheric Parameters and Surface Reflectance from Visible and Shortwave Infrared Imaging Spectroscopy Data. Surv. Geophys. 2018;39 doi: 10.1007/s10712-018-9488-9. - DOI
-
- Franch B., Vermote E., Roger J.C., Murphy E., Becker-Reshef I., Justice C., Claverie M., Nagol J., Csiszar I., Meyer D., et al. A 30+ Year AVHRR Land Surface Reflectance Climate Data Record and Its Application to Wheat Yield Monitoring. Remote Sens. 2017;9 doi: 10.3390/rs9030296. - DOI - PMC - PubMed
-
- Ientilucci E.J., Adler-Golden S. Atmospheric Compensation of Hyperspectral Data: An Overview and Review of In-Scene and Physics-Based Approaches. IEEE Geosci. Remote Sens. Mag. 2019;7:31–50. doi: 10.1109/MGRS.2019.2904706. - DOI
-
- Bernstein L.S., Adler-Golden S.M., Jin X., Gregor B., Sundberg R.L. Quick atmospheric correction (QUAC) code for VNIR-SWIR spectral imagery: Algorithm details; Proceedings of the 2012 4th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS); Shanghai, China. 4–7 June 2012; pp. 1–4. - DOI
LinkOut - more resources
Full Text Sources
Other Literature Sources