Using Genetic Distance from Archived Samples for the Prediction of Antibiotic Resistance in Escherichia coli
- PMID: 32152083
- PMCID: PMC7179619
- DOI: 10.1128/AAC.02417-19
Using Genetic Distance from Archived Samples for the Prediction of Antibiotic Resistance in Escherichia coli
Abstract
The rising rates of antibiotic resistance increasingly compromise empirical treatment. Knowing the antibiotic susceptibility of a pathogen's close genetic relative(s) may improve empirical antibiotic selection. Using genomic and phenotypic data for Escherichia coli isolates from three separate clinically derived databases, we evaluated multiple genomic methods and statistical models for predicting antibiotic susceptibility, focusing on potentially rapidly available information, such as lineage or genetic distance from archived isolates. We applied these methods to derive and validate the prediction of antibiotic susceptibility to common antibiotics. We evaluated 968 separate episodes of suspected and confirmed infection with Escherichia coli from three geographically and temporally separated databases in Ontario, Canada, from 2010 to 2018. Across all approaches, model performance (area under the curve [AUC]) ranges for predicting antibiotic susceptibility were the greatest for ciprofloxacin (AUC, 0.76 to 0.97) and the lowest for trimethoprim-sulfamethoxazole (AUC, 0.51 to 0.80). When a model predicted that an isolate was susceptible, the resulting (posttest) probabilities of susceptibility were sufficient to warrant empirical therapy for most antibiotics (mean, 92%). An approach combining multiple models could permit the use of narrower-spectrum oral agents in 2 out of every 3 patients while maintaining high treatment adequacy (∼90%). Methods based on genetic relatedness to archived samples of E. coli could be used to predict antibiotic resistance and improve antibiotic selection.
Keywords: Gram-negative bacteria; antibiotic-resistant organisms; antibiotics; empirical antibiotics; genomics; rapid diagnostics.
Copyright © 2020 MacFadden et al.
Figures





Similar articles
-
Rapid inference of antibiotic susceptibility phenotype of uropathogens using metagenomic sequencing with neighbor typing.Microbiol Spectr. 2025 Jan 7;13(1):e0136624. doi: 10.1128/spectrum.01366-24. Epub 2024 Nov 29. Microbiol Spectr. 2025. PMID: 39611823 Free PMC article.
-
Comparing Patient Risk Factor-, Sequence Type-, and Resistance Locus Identification-Based Approaches for Predicting Antibiotic Resistance in Escherichia coli Bloodstream Infections.J Clin Microbiol. 2019 May 24;57(6):e01780-18. doi: 10.1128/JCM.01780-18. Print 2019 Jun. J Clin Microbiol. 2019. PMID: 30894438 Free PMC article.
-
Antibiotic-Resistant Escherichia coli and Class 1 Integrons in Humans, Domestic Animals, and Wild Primates in Rural Uganda.Appl Environ Microbiol. 2018 Oct 17;84(21):e01632-18. doi: 10.1128/AEM.01632-18. Print 2018 Nov 1. Appl Environ Microbiol. 2018. PMID: 30171005 Free PMC article.
-
Associations among Antibiotic and Phage Resistance Phenotypes in Natural and Clinical Escherichia coli Isolates.mBio. 2017 Oct 31;8(5):e01341-17. doi: 10.1128/mBio.01341-17. mBio. 2017. PMID: 29089428 Free PMC article.
-
Outpatient antibiogram and predictors of ciprofloxacin and trimethoprim-sulfamethoxazole resistant urinary tract infections.Ann Fam Med. 2022 Apr 1;20(20 Suppl 1):3177. doi: 10.1370/afm.20.s1.3177. Ann Fam Med. 2022. PMID: 36944052 Free PMC article.
Cited by
-
A nested cohort 5-year Canadian surveillance of Gram-negative antimicrobial resistance for optimized antimicrobial therapy.Sci Rep. 2023 Aug 29;13(1):14142. doi: 10.1038/s41598-023-40012-z. Sci Rep. 2023. PMID: 37644048 Free PMC article.
-
Rapid inference of antibiotic susceptibility phenotype of uropathogens using metagenomic sequencing with neighbor typing.Microbiol Spectr. 2025 Jan 7;13(1):e0136624. doi: 10.1128/spectrum.01366-24. Epub 2024 Nov 29. Microbiol Spectr. 2025. PMID: 39611823 Free PMC article.
-
Systems-Based Approach for Optimization of Assembly-Free Bacterial MLST Mapping.Life (Basel). 2022 Apr 30;12(5):670. doi: 10.3390/life12050670. Life (Basel). 2022. PMID: 35629339 Free PMC article.
-
Inference of antimicrobial resistance (AMR) from a whole genome database outperforming AMR gene detection.iScience. 2025 Jun 20;28(8):112962. doi: 10.1016/j.isci.2025.112962. eCollection 2025 Aug 15. iScience. 2025. PMID: 40686603 Free PMC article.
-
Overview of bioinformatic methods for analysis of antibiotic resistome from genome and metagenome data.J Microbiol. 2021 Mar;59(3):270-280. doi: 10.1007/s12275-021-0652-4. Epub 2021 Feb 23. J Microbiol. 2021. PMID: 33624264 Review.
References
-
- Review on Antimicrobial Resistance. 2016. Tackling drug-resistant infections globally: final report and recommendations. Her Majesty’s Government, London, United Kingdom.
-
- Frieden T. 2013. Antibiotic resistance threats in the United States 2013. Centers for Disease Control and Prevention, Atlanta, GA.
-
- Kumar A, Roberts D, Wood KE, Light B, Parrillo JE, Sharma S, Suppes R, Feinstein D, Zanotti S, Taiberg L, Gurka D, Kumar A, Cheang M. 2006. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med 34:1589–1596. doi:10.1097/01.CCM.0000217961.75225.E9. - DOI - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical