Primary DQ effect in the association between HLA and neurological syndromes with anti-GAD65 antibodies
- PMID: 32152690
- DOI: 10.1007/s00415-020-09782-8
Primary DQ effect in the association between HLA and neurological syndromes with anti-GAD65 antibodies
Abstract
The primary cause of neurological syndromes with antibodies against glutamic acid decarboxylase 65 (GAD65-Ab) is unknown, but genetic predisposition may exist as it is suggested by the co-occurrence in patients and their relatives of other organ-specific autoimmune diseases, notably type 1 diabetes mellitus (T1DM), and by the reports of a few familial cases. We analyzed the human leukocyte antigen (HLA) in 32 unrelated patients and compared them to an ethnically matched sample of 137 healthy controls. Four-digit resolution HLA alleles were imputed from available Genome Wide Association data, and full HLA next-generation sequencing-based typing was also performed. HLA DQA1*05:01-DQB1*02:01-DRB1*03:01 was the most frequent class II haplotype in patients (13/32, 41%). DQB1*02:01 was the only allele found to be significantly more common in patients than in controls (20/137, 15%, corrected p = 0.03, OR 3.96, 95% CI [1.54-10.09]). There was also a trend towards more frequent DQA1*05:01 among patients compared to controls (22/137, 16%; corrected p = 0.05, OR 3.54, 95% CI [1.40-8.91]) and towards a protective effect of DQB1*03:01 (2/32, 6% in patients vs. 42/137, 31% in control group; corrected p = 0.05, OR 0.15, 95% CI [0.02-0.65]). There was no significant demographic or clinical difference between DQ2 and non-DQ2 carriers (p > 0.05). Taken together, these findings suggest a primary DQ effect on GAD65-Ab neurological diseases, partially shared with other systemic organ-specific autoimmune diseases such as T1DM. However, it is likely that other non-HLA loci are involved in the genetic predisposition of GAD65-Ab neurological syndromes.
Keywords: Cerebellar ataxia; Glutamic acid decarboxylase; HLA; Limbic encephalitis; Stiff person syndrome.
References
-
- Saiz A, Blanco Y, Sabater L et al (2008) Spectrum of neurological syndromes associated with glutamic acid decarboxylase antibodies: diagnostic clues for this association. Brain 131:2553–2563. https://doi.org/10.1093/brain/awn183 - DOI - PubMed
-
- Honnorat J, Saiz A, Giometto B et al (2001) Cerebellar ataxia with anti-glutamic acid decarboxylase antibodies: study of 14 patients. Arch Neurol 58:225–230. https://doi.org/10.1001/archneur.58.2.225 - DOI - PubMed
-
- García García ME, Castrillo SM, Morales IG et al (2013) Acute amnesia and seizures in a young female. Epileptic Disord 15:455–460. https://doi.org/10.1684/epd.2013.0607 - DOI - PubMed
-
- Dalmau J, Tüzün E, Wu H et al (2007) Paraneoplastic anti-N-methyl-D-aspartate receptor encephalitis associated with ovarian teratoma. Ann Neurol 61:25–36. https://doi.org/10.1002/ana.21050 - DOI - PubMed - PMC
-
- Armangue T, Spatola M, Vlagea A et al (2018) Frequency, symptoms, risk factors, and outcomes of autoimmune encephalitis after herpes simplex encephalitis: a prospective observational study and retrospective analysis. Lancet Neurol 17:760–772. https://doi.org/10.1016/S1474-4422(18)30244-8 - DOI - PubMed - PMC
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Research Materials