Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jun 24;64(5):479-489.
doi: 10.1093/annweh/wxaa022.

Risk Perceptions and Safety Cultures in the Handling of Nanomaterials in Academia and Industry

Affiliations

Risk Perceptions and Safety Cultures in the Handling of Nanomaterials in Academia and Industry

Marie Louise Kirkegaard et al. Ann Work Expo Health. .

Abstract

Objectives: Work and research with nanomaterials (NMs) has primarily focused on innovation, toxicity, governance, safety management tools, and public perceptions. The aim of this study was to identify academia and industry occupational safety and health (OSH) managers' perceptions and handling of NMs, in relation to safety culture.

Methods: Semistructured interviews were carried out with OSH managers at six academic institutions and six industrial companies. The interview statements were coded into five topics regarding NMs: risk comprehension, information gathering, actions, communication, and compliance. The statements were then coded according to a five-step safety culture maturity model reflecting increasing occupational safety maturity from passive, to reactive, active, proactive, and exemplary occupational safety.

Results: The safety culture maturity of the academic institutions were primarily active and proactive, whereas the industry group were primarily active and reactive. None of the statements were rated as exemplary, with the majority reflecting an active safety culture. The topics varied from a passive approach of having no focus on NMs and regarding risks as a part of the job, to applying proactive measures in the design, production, application, and waste management phases. Communication and introduction to OSH issues regarding NMs as well as compliance provided challenges in both academia and industry, given the increasing cultural and linguistic diversity of students/staff and employees. Workplace leaders played a crucial role in establishing a legitimate approach to working safely with NMs, however, the currently available OSH information for NMs were described as insufficient, impractical, and inaccessible. There was an embedded problem in solely relying on safety data sheets, which were often not nanospecific, as this may have led to underprotection.

Conclusions: There is a need for more structured, up-to-date, easily accessible, and user-friendly tools and information regarding toxicity and threshold limit values, relevant OSH promotion information, legislation, and other rules. The study underscores the need for politicians and engineers to collaborate with communication experts and both natural and social scientists in effectively framing information on NMs. Such a collaboration should allow for flexible deployment of multilevel and integrated safety culture initiatives to support sustainable nanotechnology and operational excellence.

Keywords: compliance; hierarchy of prevention; induction; nanotechnology; occupation safety and health; precautionary principle; risk comprehension; safety data sheets.

PubMed Disclaimer

Similar articles

Cited by

References

    1. ACS (2012) Creating safety cultures in academic institutions: a report of the Safety Culture Task Force of the ACS Committee on Chemical Safety, American Chemical Society Committee on Chemical Safety. 1st edn. Washington, DC, USA: American Chemical Society; pp. 1–57.
    1. Becker S. (2013) Nanotechnology in the marketplace: how the nanotechnology industry views risk. J Nanopart Res; 15: 1426.
    1. Bekker C, Kuijpers E, Brouwer DH et al. (2015) Occupational exposure to nano-objects and their agglomerates and aggregates across various life cycle stages; a broad-scale exposure study. Ann Occup Hyg; 59: 681–704. - PubMed
    1. Berges MGM, Aitken RJ, Read SAK et al. (2014) Risk assessment and risk management. In Vogel U, Savolainen K, Wu Q, van Tongeren M, Brouwer D, Berges M, editors. Handbook of nanosafety. San Diego: Academic Press; pp. 279–326.
    1. COMEST (2005) The precautionary principle. Paris, France: United Nations Educational, Scientific and Cultural Organization (UNESCO) pp. 1–52.

Publication types

LinkOut - more resources