Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Observational Study
. 2020 Mar 13;20(1):102.
doi: 10.1186/s12877-020-1500-9.

Frailty assessment and risk prediction by GRACE score in older patients with acute myocardial infarction

Affiliations
Observational Study

Frailty assessment and risk prediction by GRACE score in older patients with acute myocardial infarction

Atul Anand et al. BMC Geriatr. .

Abstract

Background: Risk prediction after myocardial infarction is often complex in older patients. The Global Registry of Acute Coronary Events (GRACE) model includes clinical parameters and age, but not frailty. We hypothesised that frailty would enhance the prognostic properties of GRACE.

Methods: We performed a prospective observational cohort study in two independent cardiology units: the Royal Infirmary of Edinburgh, UK (primary cohort) and the South Yorkshire Cardiothoracic Centre, Sheffield, UK (external validation). The study sample included 198 patients ≥65 years old hospitalised with type 1 myocardial infarction (primary cohort) and 96 patients ≥65 years old undergoing cardiac catheterisation for myocardial infarction (external validation). Frailty was assessed using the Clinical Frailty Scale (CFS). The GRACE 2.0 estimated risk of 12-month mortality, Charlson comorbidity index and Karnofsky disability scale were also determined for each patient.

Results: Forty (20%) patients were frail (CFS ≥5). These individuals had greater comorbidity, functional impairment and a higher risk of death at 12 months (49% vs. 9% in non-frail patients, p < 0.001). The hazard of 12-month all-cause mortality nearly doubled per point increase in CFS after adjustment for age, sex and comorbidity (Hazard Ratio [HR] 1.90, 95% CI 1.47-2.44, p < 0.001). The CFS had good discrimination for mortality by Receiver Operating Characteristic (ROC) curve analysis (Area Under the Curve [AUC] 0.81, 95% CI 0.72-0.89) and enhanced the GRACE estimate (AUC 0.86 vs. 0.80 without CFS, p = 0.04). At existing GRACE thresholds, the CFS resulted in a Net Reclassification Improvement (NRI) of 0.44 (95% CI 0.28-0.60, p < 0.001), largely through reductions in risk estimates amongst non-frail patients. Similar findings were observed in the external validation cohort (NRI 0.46, 95% CI 0.23-0.69, p < 0.001).

Conclusions: The GRACE score overestimated mortality risk after myocardial infarction in these cohorts of older patients. The CFS is a simple guided frailty tool that may enhance prediction in this setting. These findings merit evaluation in larger cohorts of unselected patients.

Trial registration: Clinicaltrials.gov; NCT02302014 (November 26th 2014, retrospectively registered).

Keywords: Acute coronary syndrome; Frailty; Myocardial infarction; Risk prediction.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Frequency histogram for the distribution of Clinical Frailty Scale scores (range 1–9) in the study population. Appended table shows the mean age, GRACE 12-month mortality risk estimation, Charlson comorbidity index and Karnofsky scale score in the study sample with each CFS score. By ANOVA, each of these measures demonstrated a significant change with increasing CFS scores (all p < 0.001)
Fig. 2
Fig. 2
Kaplan-Meier survival plot for the year following index hospital admission, stratified by frailty status. Frailty defined by CFS thresholds for not frail (CFS 1–3), vulnerable or mild frailty (CFS 4–5) and moderate to severe frailty (CFS 5–9). Log rank test for difference p < 0.001
Fig. 3
Fig. 3
ROC curve for the prediction of 12-month mortality by GRACE score and with addition of CFS in multiple logistic regression modelling. AUC = area under the curve; AIK = Akaike Information Criteria; BIC = Bayesian Information Criteria

References

    1. Roth GA, Forouzanfar MH, Moran AE, Barber R, Nguyen G, Feigin VL, et al. Demographic and epidemiologic drivers of global cardiovascular mortality. Massachusetts Medical Society. N Engl J Med. 2015;372(14):1333–1341. doi: 10.1056/NEJMoa1406656. - DOI - PMC - PubMed
    1. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the global burden of disease study 2010. Lancet. 2012;380(9859):2095–2128. - PMC - PubMed
    1. Lee PY, Alexander KP, Hammill BG, Pasquali SK, Peterson ED. Representation of elderly persons and women in published randomized trials of acute coronary syndromes. JAMA. 2001;286(6):708–713. doi: 10.1001/jama.286.6.708. - DOI - PubMed
    1. Fox KAA, Gore JM, Eagle KA, Steg PG, Agnelli G, Avezum A, et al. Rationale and design of the grace (global registry of acute coronary events) project: a multinational registry of patients hospitalized with acute coronary syndromes. Am Heart J. 2001;141(2):190–199. doi: 10.1067/mhj.2001.112404. - DOI - PubMed
    1. Avezum A, Makdisse M, Spencer F, Gore JM, Fox K, Montalescot G, et al. Impact of age on management and outcome of acute coronary syndrome: observations from the global registry of acute coronary events (GRACE) Am Heart J. 2005;149(1):67–73. doi: 10.1016/j.ahj.2004.06.003. - DOI - PubMed

Publication types

Substances

Associated data