Sparse Data-Driven Learning for Effective and Efficient Biomedical Image Segmentation
- PMID: 32169002
- PMCID: PMC9351438
- DOI: 10.1146/annurev-bioeng-060418-052147
Sparse Data-Driven Learning for Effective and Efficient Biomedical Image Segmentation
Abstract
Sparsity is a powerful concept to exploit for high-dimensional machine learning and associated representational and computational efficiency. Sparsity is well suited for medical image segmentation. We present a selection of techniques that incorporate sparsity, including strategies based on dictionary learning and deep learning, that are aimed at medical image segmentation and related quantification.
Keywords: dictionary learning; image representation; image segmentation; machine learning; medical image analysis; sparsity.
Figures








Similar articles
-
Cross-dimensional transfer learning in medical image segmentation with deep learning.Med Image Anal. 2023 Aug;88:102868. doi: 10.1016/j.media.2023.102868. Epub 2023 Jun 17. Med Image Anal. 2023. PMID: 37384952
-
TernaryNet: faster deep model inference without GPUs for medical 3D segmentation using sparse and binary convolutions.Int J Comput Assist Radiol Surg. 2018 Sep;13(9):1311-1320. doi: 10.1007/s11548-018-1797-4. Epub 2018 May 30. Int J Comput Assist Radiol Surg. 2018. PMID: 29850978
-
Machine learning techniques for biomedical image segmentation: An overview of technical aspects and introduction to state-of-art applications.Med Phys. 2020 Jun;47(5):e148-e167. doi: 10.1002/mp.13649. Med Phys. 2020. PMID: 32418337 Free PMC article. Review.
-
Variability and reproducibility in deep learning for medical image segmentation.Sci Rep. 2020 Aug 13;10(1):13724. doi: 10.1038/s41598-020-69920-0. Sci Rep. 2020. PMID: 32792540 Free PMC article.
-
Machine learning and deep learning for brain tumor MRI image segmentation.Exp Biol Med (Maywood). 2023 Nov;248(21):1974-1992. doi: 10.1177/15353702231214259. Epub 2023 Dec 16. Exp Biol Med (Maywood). 2023. PMID: 38102956 Free PMC article. Review.
Cited by
-
Machine Learning-Based Classification of Cervical Lymph Nodes in HNSCC: A Radiomics Approach with Feature Selection Optimization.Cancers (Basel). 2025 Aug 20;17(16):2711. doi: 10.3390/cancers17162711. Cancers (Basel). 2025. PMID: 40867340 Free PMC article.
-
HDS-Net: Achieving fine-grained skin lesion segmentation using hybrid encoding and dynamic sparse attention.PLoS One. 2024 Mar 21;19(3):e0299392. doi: 10.1371/journal.pone.0299392. eCollection 2024. PLoS One. 2024. PMID: 38512922 Free PMC article.
-
Machine Learning for Cardiovascular Biomechanics Modeling: Challenges and Beyond.Ann Biomed Eng. 2022 Jun;50(6):615-627. doi: 10.1007/s10439-022-02967-4. Epub 2022 Apr 20. Ann Biomed Eng. 2022. PMID: 35445297 Review.
References
-
- Zhang Z, Xu Y, Yang J, Li X, Zhang D. 2015. A survey of sparse representation: algorithms and applications. IEEE Access 3:490–530
-
- Li S, Yin H, Fang L. 2012. Group-sparse representation with dictionary learning for medical image denoising and fusion. IEEE Trans. Biomed. Eng 59:3450–59 - PubMed
-
- Ma L, Moisan L, Yu J, Zeng T. 2013. A dictionary learning approach for Poisson image deblurring. IEEE Trans. Med. Imaging 32:1277–89 - PubMed
-
- Onofrey JA, Oksuz I, Sarkar S, Venkataraman R, Staib LH, Papademetris X. 2016. MRI-TRUS image synthesis with application to image-guided prostate intervention. In Proceedings of the International Workshop on Simulation and Synthesis in Medical Imaging, pp. 157–66. Berlin: Springer
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources