Machine learning models for drug-target interactions: current knowledge and future directions
- PMID: 32171918
- DOI: 10.1016/j.drudis.2020.03.003
Machine learning models for drug-target interactions: current knowledge and future directions
Abstract
Predicting the binding affinity between compounds and proteins with reasonable accuracy is crucial in drug discovery. Computational prediction of binding affinity between compounds and targets greatly enhances the probability of finding lead compounds by reducing the number of wet-lab experiments. Machine-learning and deep-learning techniques using ligand-based and target-based approaches have been used to predict binding affinities, thereby saving time and cost in drug discovery efforts. In this review, we discuss about machine-learning and deep-learning models used in virtual screening to improve drug-target interaction (DTI) prediction. We also highlight current knowledge and future directions to guide further development in this field.
Copyright © 2020 Elsevier Ltd. All rights reserved.
Similar articles
-
Computational prediction of drug-target interactions using chemogenomic approaches: an empirical survey.Brief Bioinform. 2019 Jul 19;20(4):1337-1357. doi: 10.1093/bib/bby002. Brief Bioinform. 2019. PMID: 29377981 Review.
-
Predicting Drug-Target Interactions With Multi-Label Classification and Label Partitioning.IEEE/ACM Trans Comput Biol Bioinform. 2021 Jul-Aug;18(4):1596-1607. doi: 10.1109/TCBB.2019.2951378. Epub 2021 Aug 6. IEEE/ACM Trans Comput Biol Bioinform. 2021. PMID: 31689203
-
Computational Prediction of Drug-Target Interactions via Ensemble Learning.Methods Mol Biol. 2019;1903:239-254. doi: 10.1007/978-1-4939-8955-3_14. Methods Mol Biol. 2019. PMID: 30547446
-
Machine learning approaches and databases for prediction of drug-target interaction: a survey paper.Brief Bioinform. 2021 Jan 18;22(1):247-269. doi: 10.1093/bib/bbz157. Brief Bioinform. 2021. PMID: 31950972 Free PMC article. Review.
-
Recent trends in artificial intelligence-driven identification and development of anti-neurodegenerative therapeutic agents.Mol Divers. 2021 Aug;25(3):1517-1539. doi: 10.1007/s11030-021-10274-8. Epub 2021 Jul 19. Mol Divers. 2021. PMID: 34282519
Cited by
-
MDF-DTA: A Multi-Dimensional Fusion Approach for Drug-Target Binding Affinity Prediction.J Chem Inf Model. 2024 Jul 8;64(13):4980-4990. doi: 10.1021/acs.jcim.4c00310. Epub 2024 Jun 18. J Chem Inf Model. 2024. PMID: 38888163 Free PMC article.
-
A novel method for drug-target interaction prediction based on graph transformers model.BMC Bioinformatics. 2022 Nov 3;23(1):459. doi: 10.1186/s12859-022-04812-w. BMC Bioinformatics. 2022. PMID: 36329406 Free PMC article.
-
The Gene Network Correlation Analysis of Obesity to Type 1 Diabetes and Cardiovascular Disorders: An Interactome-Based Bioinformatics Approach.Mol Biotechnol. 2024 Aug;66(8):2123-2143. doi: 10.1007/s12033-023-00845-5. Epub 2023 Aug 22. Mol Biotechnol. 2024. PMID: 37606877
-
Harnessing Artificial Intelligence in Pediatric Oncology Diagnosis and Treatment: A Review.Cancers (Basel). 2025 May 30;17(11):1828. doi: 10.3390/cancers17111828. Cancers (Basel). 2025. PMID: 40507308 Free PMC article. Review.
-
Proximity Graph Networks: Predicting Ligand Affinity with Message Passing Neural Networks.J Chem Inf Model. 2024 Jul 22;64(14):5439-5450. doi: 10.1021/acs.jcim.4c00311. Epub 2024 Jul 2. J Chem Inf Model. 2024. PMID: 38953560 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous